Contents

1. Platts M. J. .. 47
 Emotional Dynamics of Student Projects

2. Blomkvist P. and Uppvall L. .. 53
 A Chain is only as Strong as its Weakest Link: Managing Change in the Curriculum of Industrial Management Education

3. Okkola T. and Kässi T. .. 67
 Designing an Industrial Management Curriculum, Overcoming Obstacles

 An Analysis of Knowledge Areas in Industrial Engineering and Management Curriculum

5. Amorim M., Pimentel C. and Rosa M. J. ... 83
 IEM Graduates Transition to the Labour Market: The Importance of Internships

6. Štefanić N., Tošanović N. and Hegedić M. .. 93
 Kaizen Workshop as an Important Element of Continuous Improvement Process

 Software Technologies for the Analysis of Blood Flow in the Human Body

8. Brustolin F. and Jonker G. H. ... 105
 Research in Industrial Engineering and Management: An Explorative Survey among Seven European IEM Departments

9. Sando S. and Ferencak M. ... 113
 ALUMNI Indicator as a Criterion for Evaluating the Quality of Academic Institutions
Software Technologies for the Analysis of Blood Flow in the Human Body

Aleksandar Nikolic
Research Assistant, Faculty of Engineering Kragujevac, Sestre Janjic 6, Serbia, dziga@kg.ac.rs

Milan Blagoevic
Research Assistant, Faculty of Engineering Kragujevac, Sestre Janjic 6, Serbia, blagoje@kg.ac.rs

Miroslav Zivkovic
Full Professor, Faculty of Engineering Kragujevac, Sestre Janjic 6, Serbia, zle@kg.ac.rs

Aleksandar Aleksic
Research Assistant, Faculty of Engineering Kragujevac, Sestre Janjic 6, Serbia, aaleksic@kg.ac.rs

Slobodan Savic
Associate Professor, Faculty of Engineering Kragujevac, Sestre Janjic 6, Serbia, ssavic@kg.ac.rs

Received (06 April 2012); Revised (17 May 2012); Accepted (06 June 2012)

Abstract
This paper presents an overview on software technologies used in study of blood flow in the human body. Basic equations of fluid flow are presented and the basis for creating an independent software package PAK-F for the calculation of viscous fluid flow. The carotid artery bifurcation fluid flow simulations are compared by software PAK-F and COMSOL Multiphysics in the case study. Geometry of the carotid artery bifurcation is obtained through the analysis of images from CT scanner. Finite element model is created on real 3d geometry model. Presented numerical results show that developed software PAK-F corresponds well with results from COMSOL Multiphysics.

Key words: bifurcation, blood flow, fem, wall shear stress

1. INTRODUCTION
Biomechanics is a relatively new scientific area that has emerged from several scientific areas such as medicine, engineering, computational science. Expansion of the computer sciences brings biomechanics to a new level higher than the level of about 20 years ago. Software programs for the management of biomechanical characteristics have evolved along with computers. In recent years there are more software programs that are based on calculations of blood flow in arteries, air flow in the lungs and stress conditions in human skeletal system. Good management of these technologies may lead to research improvement but also to cutting costs of research, increasing the field of application, etc.

Atherosclerosis is one of the most widespread diseases that affecting blood vessels in the human body. The studies presented in [1-5] shows that very responsible are hemodynamic factors such as low or reversed wall shear stress. Computational fluid dynamics (CFD) is an area of fluid dynamics that can be applied to study the hemodynamic factors in human body.

The software package COMSOL Multiphysics (www.comsol.com) is one of the newer software that deals with coupled multiphysical problems. It contains many modules for study of fluid flow from module for laminar flow, turbulent flow, module for fluid flow through porus media and fluid-structure interaction. The nature of this software package enables easy handling and using the interface.

The software package PAK-F [6] was developed at the Laboratory for Engineering Software, Faculty of Engineering, Kragujevac. It consists of modules for steady and transient incompressible fluid flow with heat transfer. It is based on finite element method and on the fundamental equations of viscous fluid flow. The reason for development of domestic software in addition to other relevant software is based on cost effectiveness and the possibility of upgrading the software in terms of solving biomechanical problems. To create an analysis file for software PAK-F, it is necessary to create a model in any pre-processors such as GID, FEMAP, CATIA etc. After fluid flow analysis results are printed in a form that can be post-processed in other software such as FEMAP, GID, Paraview, IDEAS, PAK-G, etc.

This paper is structured as follows: basic equations of incompressible fluid flow and the development of software PAK-F are given in the sections 2 and 3. In the section 4 – the case study, the blood flow through carotid artery bifurcation is presented which has intention to investigate capabilities and performances of software package PAK-F comparing them with
COMSOL Multiphysics. Section 5 gives conclusions and directions for improvement of managing software in the sense of needs of research and software performances.

The main goal of this paper is to confirm that software PAK-F is qualitative tool for scientific research with capabilities that corresponds to the well known software packages such is COMSOL Multiphysics.

2. BASIC EQUATIONS OF INCOMPRESSIBLE FLUID FLOW

Basic differential equations that governing the flow of an incompressible fluid \([7-9]\) are the Navier-Stokes equations given by expressions:

\[
\rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) + \nabla p - \mu \nabla^2 \mathbf{V} - \mathbf{f} = \mathbf{0} \quad (1)
\]

\[
\nabla \cdot \mathbf{V} = 0 \quad (2)
\]

Equation (1) represents the second Newton’s law applied to the mass of fluid in control volume and (2) represents the continuity equation of fluid flow. In previous equations \(\rho\) is the fluid density, \(\mathbf{V}\) is velocity of fluid, \(p\) is pressure of fluid, \(\mu\) is dynamic viscosity and \(\mathbf{f}\) is volume forces. Using Galerkin method, with appropriate interpolation functions:

\[
\mathbf{V}_i = \hat{\mathbf{h}}_i \mathbf{V}_I \quad I = 1, 2, \ldots, N
\]

\[
p = \hat{\mathbf{h}}_i \hat{\mathbf{p}}_I \quad I = 1, 2, \ldots, M
\]

and integration by volume of finite element, a matrix form of equations (1) and (2) is obtained such as:

\[
\mathbf{M} \dot{\mathbf{V}} + \mathbf{K}_v \mathbf{V} + \mathbf{K}_p \mathbf{P} = \mathbf{F}_v
\]

\[
\mathbf{K}_v \mathbf{V} = \mathbf{0}
\]

Components of this matrix and vectors are:

\[
\mathbf{M}_{ij} = \rho \int \hat{\mathbf{h}}_i \hat{\mathbf{h}}_j dV
\]

\[
(\mathbf{K}_{vv})_{ij} = \int \hat{\mathbf{h}}_i \hat{\mathbf{h}}_j \mu dV + \int \hat{\mathbf{h}}_i \hat{\mathbf{h}}_j \mu dV
\]

\[
(\mathbf{K}_{vp})_{ij} = -\int \hat{\mathbf{h}}_i \hat{\mathbf{h}}_j dV
\]

\[
(\mathbf{F}_v)_i = \int \hat{\mathbf{h}}_i f_i dV + \int h_i (-p \delta_{ij} + \mu \mathbf{V}_j) n j dS
\]

By grouping equations (5) and (6), system of differential equations is presented as:

\[
\begin{bmatrix}
\mathbf{M} & 0 \\
0 & \mathbf{0}
\end{bmatrix}
\begin{bmatrix}
\dot{\mathbf{V}} \\
\dot{\mathbf{P}}
\end{bmatrix}
+ \begin{bmatrix}
\mathbf{K}_v & \mathbf{K}_p \\
\mathbf{K}_p & \mathbf{0}
\end{bmatrix}
\begin{bmatrix}
\mathbf{V} \\
\mathbf{P}
\end{bmatrix}
= \begin{bmatrix}
\mathbf{F}_v \\
\mathbf{0}
\end{bmatrix}
\]

which can be written in the following form:

\[
\mathbf{M} \dot{\mathbf{U}} + \mathbf{K} \mathbf{U} = \mathbf{F}
\]

The system of equations (12) is a symmetrical system of nonlinear differential equations of first order by unknown values in nodes \(\mathbf{V}\) and \(\mathbf{P}\). The matrix \(\mathbf{K}_v\) (8) is nonlinear, since it depends on velocity. Wall shear stress is a hemodynamic factor which have great importance to study the problem of blood flow. In this case wall shear stress is calculated based on equation:

\[
\tau_w = -\mu \frac{\partial \mathbf{U}}{\partial \mathbf{n}} |_{wall}
\]

where \(\tau_w\) is wall shear stress, \(\mathbf{u}_t\) is tangential velocity and \(\mathbf{n}\) is the direction of a unit vector normal to the wall at the moment.

3. DEVELOPMENT OF SOFTWARE PAK-F

The software package PAK-F consists of modules for steady and transient incompressible fluid flow with heat transfer. It is developed on finite element method and it corresponds to the fundamental equations of viscous fluid flow. Programming language FORTRAN which is especially suited for numeric computation and scientific computing was used in order to develop basic subroutines of PAK-F. The global algorithm that describes software PAK-F is shown in Fig. 1.

![Figure 1. Global algorithm of software PAK-F](image-url)
and pressure. This procedure continues until convergence criteria are not satisfied or until corresponding increments of displacements and pressures are not become enough small. After this, PAK-F presents the obtained results that can be post processed in several file formats such as FEMAP neutral file, IDEAS graphics file, VTK Paraview format.

4. CASE STUDY: COMPARATION OF SOFTWARE PACKAGES USED FOR SIMULATING BLOOD FLOW

Simulation of blood flow through the carotid artery in human body was carried out on a realistic three-dimensional geometry.

The geometry of the artery is obtained by images from CT scanner using STL and CAD programs. A schematic model of the carotid bifurcation is shown in Fig. 2. The division of the geometric model is built by typical cross sections shown in Fig. 2.

Mesh of finite elements was created by parametric modeling software and in proper format exported for simulating in softwares PAK-F and COMSOL Multiphysics. Finite element model contains 18706 elements with 20720 nodes (Fig. 3).

The boundary conditions for the calculation model are:
- inlet velocity profile is parabolic 3d inlet like a fluid flow through a circular tube,
- on the walls of the artery fluid velocity is set to zero (no-slip condition) and
- on the output side of artery surface forces are set to zero.

4.1. Results of simulation in software PAK-F

The calculation was performed in 30 steps (10 by 0.02s and 20 by 0.03s which gives in total 0.8s). According to the literature [10-13] following input data is used: the average flow velocity in the inlet \(v_{\text{mean}} = 16.9 \text{[cm/s]} \), density of blood is \(\rho = 1050 \text{[kg/m}^3\text{]} \) and coefficient of dynamic viscosity is \(\mu = 0.003675 \text{[Pa-s]} \). Results obtained by PAK-F are printed in *.vtk file as described in [14]. Figs. from 5 to 10 shows the results of velocity field and wall shear stress.
Fluid velocity is changed depending on the region that is being observed on carotid artery bifurcation. On the internal carotid artery (ICA) it can be seen where there is a narrowing of blood vessels it leads to increased blood flow velocity.

On the external carotid artery (ECA) where cross section is bigger and flow velocity is smaller there is low values of wall shear stress (fig. 9 and fig. 10). In these areas where wall shear stresses have small values there is possibility for the occurrence of atherosclerosis.

Fig. 9 and 10 shows wall shear stress in step 05 of cardiac cycle. In this step there is maximum value of wall shear stress at peak systolic flow.
5. CONCLUSION

Provided case study illustrates the application of PAK-F in the study of hemodynamic characteristics of carotid artery bifurcation. It can be seen that numerical results obtained by software PAK-F correspond well with results from software COMSOL Multiphysics. This is very important issue because it indicates that developed software – PAK-F is very precise software tool which can give inputs to cardiologists. Thanks to the obtained results, cardiologists are set in the role of decision makers. They have clear view about insight of the blood flow through carotid artery bifurcation, so they can suggest surgical intervention or not. That is the first part of this papers contribution. The other part of contribution corresponds to the fact that new software tool PAK-F is tested and its performances are measured. Software PAK-F is able to solve the problems of laminar viscous incompressible fluid flow. The combination of PAK-F with certain programs for pre-processing and post-processing gets a well-as well as air flow simulation that exists in human lungs. The nature of PAK-F set some limitations such as impossibility of solving turbulent fluid flow. Other limitations are related to the problems of analyzing compressible fluid flow which cannot be solved in this version of PAK-F.

Compared to the COMSOL Multiphysics, it can be concluded that PAK-F is enough user friendly according to the possibilities and ergonomics of the software. Diagrams and results are clear and can be exported to other software packages such as FEMAP, GID, Paraview, IDEAS, PAKG which make PAK-F very flexible and suited for the scientific research.

6. ACKNOWLEDGEMENT

The part of this research is supported by Ministry of Education and Science, Republic of Serbia, Grants TR32036, I141007 and O175082.

7. REFERENCES

Focus and Scope
In every facet of production and business systems, International Journal of Industrial Engineering and Management (IJIEM) advances engineering and management practice by offering both theoretical contributions and applicative techniques. IJIEM encompasses academic theory and effective management practice for both the internal and external environment of the organization and offers to academics, engineers and managers informative, novel and thought-provoking reading.

The aim of this quarterly journal is to publish theoretical works, significant researches, technical and methodological applications, surveys and case studies concerned with all aspects of Industrial Engineering and Management as well as empirical articles that will advance our understanding of industrial engineering and engineering management in organizations. The methodological approaches can be quantitative or mainly qualitative. Articles that are improving or extending theoretical approaches in this field are also welcome.

Topics
Production Systems
Automation, Robotics and Mechatronics
Information and Communication Systems
Quality, Maintenance and Logistics
Safety and Reliability
Organization and Human Resources
Engineering Management
Entrepreneurship and Innovation
Project Management
Marketing and Commerce
Investment, Finance and Accounting
Insurance Engineering and Management
Media Engineering and Management
Education and Practices in Industrial Engineering and Management

Peer Review Process
International Journal of Industrial Engineering and Management selects articles following a double blind, peer review process. Once the editorial team has checked that the contribution follows the formatting and content author guidelines, it is sent to two anonymous reviewers with expertise in the field. Grounded on reviewer's recommendations, the editor will communicate the results of the evaluation to the corresponding author. The editor will communicate the overall result of the evaluation (rejected, accepted or accepted with modifications), including the reviewer's comments. If the article has been accepted with modifications, authors should send back to the journal a new version of the article, that will be reviewed again by the same team of reviewers. The authors can attach a letter to the editor, which should indicate the modifications made in the article following the editor's and reviewer's comments. If the authors decide not to follow a particular reviewer's instruction, they should explain their reasons for not doing so.

Publication Frequency
International Journal of Industrial Engineering and Management is published four times a year. The four issues of one year are the four numbers of one volume. From time to time, IJIEM will publish issues devoted to specific research themes. These issues will have specific editors and specific calls for papers will be announced.

Open Access Policy
IJIEM provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.