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Abstract

A new approach for the design of recursive fullband digital differentiators using parallel all-pass structure
is discussed in this paper. While magnitude response of designed fullband differentiator approximates the
ideal one in the weighted Chebyshev sense, its phase response is a nearly-linear function of frequency at low
frequencies. The low-pass differentiators, presented in this paper, are obtained by cascading the proposed
recursive fullband differentiators with the corresponding low-pass filters. The phase response linearity error
of such low-pass differentiators is shown to be primarily affected by the phase response nonlinearity of the
utilized low-pass filter. A comparison with some of the existing fullband and low-pass differentiators shows
that proposed differentiators require less multiplications, while their phase and magnitude responses are
either better or slightly worse than those of existing differentiators.

Keywords: all-pass digital filter, parallel connection, weighted Chebyshev approximation, fullband
differentiator, low-pass differentiator

1. Introduction

Digital fullband differentiators, needed in a wide range of digital signal processing applications [1, 2, 3,
4, 5] where the time derivative of input signal needs to be computed, can be designed either as an infinite
impulse response (IIR) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] or finite impulse response
filters [21, 22, 23]. While the order of the IIR fullband differentiator is significantly lower compared to its5

finite impulse response filter counterpart, the perfectly linear phase response of IIR fullband differentiator
cannot be achieved. On the other hand, this is not an issue in most practical applications if obtained phase
response is nearly-linear function of frequency.

There are several approaches to the IIR fullband differentiator design. Conventional approach to the
IIR differentiator design is based on inversion of the IIR integrator transfer function followed by reflection10

of the unstable poles inside the unit circle and compensation of the amplitude [6, 7, 8, 9]. In other words,
conventional approach reduces to IIR integrator design problem. Starting point of design methods of the
second approach is the IIR differentiator transfer function, obtained either by conventional approach or by
any other design method, which is than optimized utilizing classical [10] or evolutionary [10, 16] optimization
techniques. Methods of the third approach determine the unknown coefficients of the recursive transfer15

function such that some objective function is minimized. Design method presented in [12] formulates the
IIR fullband differentiators’ design problem as convex constrained optimization problem in unknown zeros’
and poles’ radiuses and phase angles, such that its solution minimizes the group delay-deviation under
the constraint that maximum magnitude response error is below some prescribed value. Coefficients of
the direct form differentiators’ coefficients are determined by minimizing the L2 norm of the magnitude20

response error by means of metaheuristic optimization techniques in [8, 14, 17], and by iterative quadratic
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programming approach in [18]. On the other hand, a noniterative method presented in [20] formulates the
fullband differentiators’ design problem as quadratic programming problem such that the magnitude and
phase response specifications are simultaneously approximated. Another method of the third approach is
given in [15] where coefficients of the lattice wave digital filter representation of the third and the fifth order25

fullband differentiators are determined by minimizing the L1 norm error using the metaheuristic optimization
technique.

In this paper, a new approach for the design of IIR fullband digital differentiators using parallel all-pass
structure is presented. Magnitude response of obtained fullband differentiators approximate the ideal one
in the weighted Chebyshev sense. On the other hand, although phase response linearity of proposed IIR30

fullband differentiators cannot be controlled, it is a nearly-linear function of frequency at low frequencies.
Thus, phase response linearity of low-pass differentiator, obtained by cascading proposed IIR fullband dif-
ferentiator with the corresponding low-pass filter, is primarily affected by the phase response linearity of
the utilized low-pass filter. To the best of our knowledge, except differentiators presented in [15], design of
IIR fullband differentiators using parallel all-pass structure does not appear to be considered in the existing35

literature.
The rest of the paper is structured as follows. In Sec. 2, the problem formulation of an all-pass based IIR

fullband differentiator with a magnitude response approximating the ideal one in weighted Chebyshev sense
is presented. The proposed IIR fullband differentiator design method is discussed in Sec. 3, while design
examples and comparison with some of the existing fullband and low-pass differentiators (the proposed40

low-pass differentiators are obtained by cascading proposed fullband differentiators with the corresponding
low-pass filters) are presented in Sec. 4. Finally, concluding remarks are given in Sec. 5.

2. Problem formulation

Transfer function of the IIR fullband differentiators, whose design is considered in this paper, is assumed
to be of the following form45

H (z) =
π

2

[
AN (z)− z−(N−1)

]
, (1)

as depicted in Fig. 1, where AN (z) is the transfer function of Nth order stable all-pass filter with single
poles

AN (z) = z−N
1 +

∑N
i=1 aiz

i

1 +
∑N
i=1 aiz

−i
. (2)

Substituting z = ejω in Eq. 1, followed by some mathematical manipulations, magnitude and phase re-

x[n]

π/2

b

AN (z)

z1−N

−
y[n]

Figure 1: Fullband differentiator realized using parallel all-pass structure.

sponses of the proposed fullband differentiator are obtained as

∣∣H
(
ejω
)∣∣ = π

∣∣∣∣sin
φ (ω) + (N − 1)ω

2

∣∣∣∣ , (3)

ϕH (ω) =
φ (ω)− (N − 1)ω + π

2
, (4)
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where φ (ω) denotes phase response of the all-pass filter AN (z), which can be obtained from Eq. 2 as50

φ (ω) = −Nω + 2 arctan

∑N
i=1 ai sin (iω)

1 +
∑N
i=1 ai cos (iω)

. (5)

Obviously magnitude response given by Eq. 3 will approximate the magnitude response of an ideal fullband
differentiator ∣∣Hid

(
ejω
)∣∣ = ω, (6)

if the phase response of the corresponding all-pass filter AN (z) approximates

φ′ (ω) = − (N − 1)ω − 2 arcsin
ω

π
, (7)

for ω ∈ [0, π]. Since phase response φ (ω) of the stable Nth order all-pass filter AN (z) with real coefficients
satisfies φ (0) = φ′ (0) = 0 and φ (π) = φ′ (π) = −Nπ, it can be concluded that

∣∣H
(
ej0
)∣∣ =

∣∣Hid

(
ej0
)∣∣ = 055

and
∣∣H
(
ejπ
)∣∣ =

∣∣Hid

(
ejπ
)∣∣ = π. Ideal phase response φ′ (ω) of the second order all-pass filter A2 (z),

characterizing the third order fullband differentiator, is shown in Fig. 2.
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Figure 2: Ideal phase response of the all-pass filter A2 (z) characterizing the 3rd order IIR fullband differentiator.

By rewriting Eq. 3 using Eq. 7 as

∣∣H
(
ejω
)∣∣ = π

∣∣∣∣sin
(

arcsin
ω

π
− φ (ω)− φ′ (ω)

2

)∣∣∣∣ , (8)

and assuming that the magnitude response of the fullband differentiator approximates ideal magnitude
response given by Eq. 6 in the weighted Chebyshev sense, that is60

εmag (ωk) =
∣∣H
(
ejωk

)∣∣− ωk = (−1)
k+p δ

Wk
, (9)

for k = 1, 2, . . . , N + 1, where Wk is the weighting factor associated to the kth extremal value of the
magnitude error function εmag (ω), 0 < ω1 < ω2 < . . . < ωN+1 < π are frequency points where those
extremal values occur, parameter p ∈ {0, 1} determines whether maximum (p = 1) or minimum (p = 0)
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of the magnitude error function occurs at frequency ω = ω1, while δ > 0 is the corresponding weighted
Chebyshev norm, it follows that65

π

∣∣∣∣sin
(

arcsin
ωk
π
− φ (ωk)− φ′ (ωk)

2

)∣∣∣∣ = ωk + (−1)
k+p δ

Wk
, (10)

for k = 1, 2, . . . , N + 1. Adopting a reasonable assumption that the all-pass filter’s phase response approx-
imation error

εph (ω) = φ (ω)− φ′ (ω) , (11)

for ω = ω1 satisfies inequality

|εph (ω1)| < arcsin
ω1

π
, (12)

Eq. 10 reduces to

π sin

(
arcsin

ωk
π
− φ (ωk)− φ′ (ωk)

2

)
= ωk + (−1)

k+p δ

Wk
(13)

or equivalently70

−π sin
φ (ωk) + (N − 1)ωk

2
= ωk + (−1)

k+p δ

Wk
, (14)

for k = 1, 2, . . . , N + 1. Note that for p = 0, ω1 ≥ δ, while for N + p+ 1 even, ωN+1 ≤ π − δ. In the case
of equiripple magnitude response of the IIR fullband differentiator (Wk = 1 for k = 1, 2, . . . , N + 1), the
upper and lower envelopes of the phase response approximation error εph (ω) of the corresponding all-pass
filter AN (z) can be determined from Eq. 13 as follows

Uεph (ω) = 2
(
arcsin ω

π − arcsin −δ+ωπ

)
,

Lεph (ω) = 2
(
arcsin ω

π − arcsin δ+ω
π

)
,

(15)

respectively. Plots of those envelopes for various values of the Chebyshev norm δ and ω ∈ [δ, π − δ] are75

given in Fig. 3. As expected, with δ decreasing phase error envelopes becomes closer to 0, that is phase
response approximation error becomes smaller. Another conclusion that can be drawn from Fig. 3 is that the
phase response of the proposed fullband differentiator (Eq. 4) with equiripple magnitude response cannot
be equiripple.

Since the ideal phase response (note that term ”ideal” means that the magnitude response of the proposed80

IIR fullband differentiator is linear, but not its phase response) of the proposed IIR fullband differentiator
approximately equals

− (N − 1)ω − ω

π
+
π

2
,

for ω small, Eqs. 7 and 4, which is linear function of frequency, low-pass differentiators with nearly-linear
phase can be obtained by a cascading approach. Therefore, the phase response linearity error of such IIR
low-pass differentiators is primarily affected by the phase response linearity error of the utilized low-pass85

filters.
In the following section, the iterative procedure for the determination of the unknown all-pass filter

coefficients’ vector
a = [a1, a2, . . . , aN ]

T
, (16)

such that the obtained magnitude response of the IIR fullband differentiator approximates the ideal one
in the weighted Chebyshev sense is discussed. Determination of the initial solution vector a(0) such that90

εmag
(
ω, a(0)

)
exhibit N + 1 sign-alternating extremal values will be treated separately. Notation H (z, W)

will be used in the following text whenever the dependence of the IIR fullband differentiator transfer function
on the weighting factors

W = [W1, W2, . . . , WN+1] , (17)

needs to be emphasized.
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Figure 3: Envelopes of the phase error function εph (ω) for various values of the Chebyshev norm δ, ω ∈ [δ, π − δ] and Wk = 1,
for k = 1, 2, . . . , N + 1.

3. Proposed design95

In order to obtain weighted Chebyshev approximation of the fullband differentiator’s magnitude response,
Eq. 14, iterative approach is proposed. In every iteration t ≥ 1 of the algorithm, coefficients’ vector a(t)

and the value of the parameter δ(t) are obtained by means of previously determined vector a(t−1) and the
parameter δ(t−1). Mentioned update process is performed by solving approximately the following system of
equations (note Eq. 14):100

sin
φ
(
ω

(t−1)
k , a(t)

)
+ (N − 1)ω

(t−1)
k

2
= − 1

π

[
ω

(t−1)
k + (−1)

k+p δ
(t)

Wk

]
, (18)

for k = 1, 2, . . . , N + 1, where ω
(t−1)
k is the frequency position of the kth extremum point of the magnitude

error function εmag
(
ω, a(t−1)

)
. Namely, since Eq. 18 is nonlinear in an unknown coefficients vector a(t), its

left-hand side is linearized about a(t−1) by replacing it by its first order Taylor expansion

sin
φ
(
ω

(t−1)
k , a(t−1)

)
+ (N − 1)ω

(t−1)
k

2
+

1

2
cos

φ
(
ω

(t−1)
k , a(t−1)

)
+ (N − 1)ω

(t−1)
k

2

N∑

i=1

∂φ
(
ω

(t−1)
k , a(t−1)

)

∂ai
∆ai,

(19)
for k = 1, 2, . . . , N + 1, where partial derivatives can be determined from Eq. 5 as

∂φ
(
ω

(t−1)
k , a(t−1)

)

∂ai
= 2

sin
(
iω

(t−1)
k

)
+
∑N
n=1 a

(t−1)
n sin

(
ω

(t−1)
k (i− n)

)

(
1 +

∑N
n=1 a

(t−1)
n cos

(
nω

(t−1)
k

))2

+
(∑N

n=1 a
(t−1)
n sin

(
nω

(t−1)
k

))2 . (20)

In this way, linearized form of Eq. 18 can be rewritten in matrix notation as105

Ψ(t−1) ·
[

∆a(t) = a(t) − a(t−1)

∆δ(t) = δ(t) − δ(t−1)

]
= λ(t−1), (21)
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where Ψ(t−1) =
[
ψ

(t−1)
ki

]
is the (N + 1)× (N + 1) square matrix, while λ(t−1) =

[
λ

(t−1)
k

]
is the (N + 1)× 1

column vector, with elements

ψ
(t−1)
ki =





π
2

∂φ
(
ω

(t−1)

k
, a(t−1)

)
∂ai

cos
φ
(
ω

(t−1)

k
, a(t−1)

)
+(N−1)ω

(t−1)

k

2 , 1 ≤ i ≤ N
(−1)k+p

Wk
, i = N + 1

, (22)

λ
(t−1)
k = −ω(t−1)

k + (−1)
k+p+1 δ

(t−1)

Wk
− π sin

φ
(
ω

(t−1)
k , a(t−1)

)
+ (N − 1)ω

(t−1)
k

2
. (23)

Based on the above discussion and assuming a(t−1) and δ(t−1) known, approximate solution for the unknowns
δ(t) and a(t) can be obtained by solving the system of linear equations given by Eq. 21. On the other hand,
the obtained solution does not guarantee that extremal values of the IIR fullband differentiator’s magnitude110

response error function occur at frequencies ω
(t−1)
k , k = 1, 2, . . . , N + 1. Hence, we propose the following

exchange algorithm for the IIR fullband differentiator design:

0. t = 0. Set δ(0) to 10−4.

1. Based on the known coefficients’ vector a(t) determine the set of frequencies ω
(t)
1 < ω

(t)
2 < . . . < ω

(t)
N+1

where sign-alternating extremal values of εmag
(
ω, a(t)

)
occur.115

2. t = t+ 1. Determine ∆a(t) and ∆δ(t) using Eq. 21 as
[

∆a(t)

∆δ(t)

]
=
(
Ψ(t−1)

)−1

· λ(t−1). (24)

3. If max
{∣∣∆a(t)

∣∣ ,
∣∣∆δ(t)

∣∣} ≤ ∆tol, where ∆tol is the prescribed tolerance, jump to the next step,
otherwise proceed from the step 1.

4. The end of the algorithm. Unknown coefficients’ vector a equals a(t), while weighted Chebyshev norm
δ equals δ(t).120

3.1. Determination of the initial solution

Since the initial solution for the all-pass filter’s coefficients a(0) should be such that the magnitude
response error function εmag

(
ω, a(0)

)
has N + 1 sign-alternating extremal points, it will be determined

by setting the all-pass filter’s phase response error function εph
(
ω, a(0)

)
to zero at N distinct equidistant

frequency points:125

ω̃k = k
π

N + 1
, k = 1, 2, . . . , N, (25)

which is equivalent to

φ
(
ω̃k, a(0)

)
= φ′ (ω̃k) = − (N − 1) ω̃k − 2 arcsin

ω̃k
π
, (26)

for k = 1, 2, . . . , N .
As the phase response φ (ω) of the all-pass filter AN (z) is related to its coefficients as

N∑

i=1

ai sin
φ (ω) + (N − 2i)ω

2
= − sin

φ (ω) +Nω

2
, (27)

which can be easily derived from Eq. 5, Eq. 26 can be rewritten as

N∑

i=1

a
(0)
i sin

[
ω̃k

(
1

2
− i
)
− arcsin

ω̃k
π

]
= − sin

[
ω̃k
2
− arcsin

ω̃k
π

]
, (28)

for k = 1, 2, . . . , N . Therefore, the solution for a(0) can be determined using130

a(0) = Υ−1γ, (29)

6



where Υ = [υki] is the N ×N matrix, while γ = [γk] is the N × 1 column vector such that

υki = sin

[
ω̃k

(
1

2
− i
)
− arcsin

ω̃k
π

]
, γk = − sin

[
ω̃k
2
− arcsin

ω̃k
π

]
. (30)

Poles of the IIR fullband differentiator’s transfer function that correspond to the initial solution coeffi-
cients’ vector a(0), for N from 2 to 6, are given in Tab. 1. As can be observed from Tab. 1, for every N from

Table 1: Poles of the transfer function corresponding to the coefficients’ vector a(0), for N from 2 to 6.
N

2 3 4 5 6

0.394623 · ejπ 0.477033 · ejπ 0.536694 · ejπ 0.582487 · ejπ 0.619013 · ejπ
0.103535 0.181456 · e±j0.335530π 0.222670 0.324552 · e±j0.584852π 0.311111

0.257668 · e±j0.491652π 0.275037 · e±j0.193385π 0.381936 · e±j0.647752π
0.325688 · e±j0.321006π

2 to 6, one real pole is placed at the phase angle of π rad. Furthermore, since this is shown to be true for
every N up to 100, it seems to be true for every N .135

All-pass filter’s phase response error functions εph
(
ω, a(0)

)
and corresponding fullband differentiator’s

magnitude response error functions εmag
(
ω, a(0)

)
are shown in Fig. 4. As expected, the proposed initial

solution determination procedure results in fullband differentiator’s magnitude error function and the all-
pass filter’s phase response error function having N + 1 extremal values.
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Figure 4: (A) Fullband differentiator’s magnitude response error function εmag

(
ω, a(0)

)
and (B) corresponding all-pass filter’s

phase response error function εph
(
ω, a(0)

)
, for N from 2 to 6.

4. Design examples and comparison with existing fullband and low-pass differentiators140

Design examples of the IIR fullband differentiators with equiripple magnitude responses (W1 = W2 =
. . . = WN+1 = 1), as well as the IIR low-pass differentiators obtained by cascading proposed fullband
differentiators with the Chebyshev I low-pass filters having 0.1 dB ripple in the passband, are considered in
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this section. Mentioned choice of the low-pass filter type and its passband ripple value is adopted such that
the comparison with the IIR low-pass differentiators presented in [24] is straightforward.145

Let G (z) denote the transfer function of the low-pass differentiator, which in our case equals

G (z) = H (z)QL (z) , (31)

where QL (z) is the transfer function of the Lth order Chebyshev I low-pass filter having 0.1 dB passband
ripple value. Average passband group delay of both fullband and low-pass differentiators can be expressed
as

τ =
ϕ (0)− ϕ (ωp)

ωp
, (32)

where ωp is the passband edge frequency which in case of fullband differentiator equals π rad, while ϕ (ω)150

is the phase response of the differentiator

ϕ (ω) =

{
ϕH (ω) + ϕQ (ω) , ωp < π

ϕH (ω) , ωp = π
, (33)

and ϕQ (ω) is the phase response of the utilized low-pass filter. Employing Eq. 4 and the properties of the
phase response of the stable all-pass filter AN (z) (φ (0) = 0, φ (π) = π), as well as the fact that ϕQ (0) = 0,
average passband group delay of the proposed differentiators can be determined as

τ =

{
π−2(ϕH(ωp)+ϕQ(ωp))

2ωp
, ωp < π

N − 0.5, ωp = π
. (34)

As the means of comparison between IIR differentiators obtained using proposed and existing design155

methods, the phase response linearity error function defined as [12]

ξph (ω) = ϕ (ω)−
(π

2
− ωτ

)
, (35)

along with the absolute magnitude response error function

ξmag (ω) =

{ ∣∣∣∣G
(
ejω
)∣∣− ω

∣∣ , ωp < π∣∣∣∣H
(
ejω
)∣∣− ω

∣∣ , ωp = π
, (36)

will be used. Clearly, the maximum value of ξmag (ω) in the passband when ωp < π (that is when low-pass
differentiators considered) can be decreased by suitable choice of the weighting factors Wk, k = 1, 2, . . . , N+
1, for the corresponding proposed IIR fullband differentiator design. Based on the previous equation, it can160

be concluded that the magnitude response error function of the obtained IIR low-pass differentiator is not
necessarily equiripple.

4.1. IIR fullband differentiator with equiripple magnitude response

IIR fullband differentiators with equiripple magnitude responses (Wk = 1 for k = 1, 2, . . . , N + 1)
characterized by the all-pass filters of order N from 1 to 40 were designed using the proposed method with165

∆tol equal to 10−10. Required number of iterations for the algorithm to converge for each N from 1 to 40 is
less than or equal to 6. Therefore, it can be concluded that the proposed algorithm exhibits fast convergence
if weighting factors are equal to 1. Based on determined Chebyshev norms δ and assuming the following
approximating function

log10N = C1δ
−1 + C2 ln δ + C3, (37)

unknown parameters C1, C2 and C3 were determined using nonlinear regression170

C1 = −0.000843923409228,
C2 = −0.536473372397133,
C3 = −0.898222004574358.

(38)
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In Fig. 5, the obtained Chebyshev norms (depicted with dots) are presented along with approximating

function N = 10C1δ
−1+C2 ln δ+C3 (solid line). As can be seen, the assumed function approximates the

obtained Chebyshev norms well. Therefore, we propose the following inequality for estimating the required
order of the all-pass filter characterizing IIR fullband differentiator such that its maximum magnitude
response error is less than or equal to δmax:175

N ≥ 10C1δ
−1
max+C2 ln δmax+C3 . (39)

Obtained fullband differentiator’s magnitude and phase responses, for N = 3, 6, 8, are given in Fig. 6, while

0.8 6 12 18
0

10

20

30

40

δ · 102

N

Figure 5: IIR fullband differentiator with equiripple magnitude response: Order of the all-pass filter N vs. Chebyshev norm δ.

the corresponding error functions are presented in Fig. 7. While the maximum of the fullband differentiator’s
magnitude response error decreases with the increase of the all-pass filter order, Fig. 7A, the improvement of
the magnitude response is not followed by the improvement of the fullband differentiator’s phase response,
Fig. 7B, as expected having in mind Eqs. 7 and 4.180

4.1.1. Comparison with existing IIR fullband differentiators

Proposed 3rd order IIR fullband differentiator with equiripple magnitude response is being compared
to many existing IIR fullband differentiators of the same order. However, only results of comparison with
the representative existing differentiators, that is those with better or comparable magnitude response and
phase response linearity errors, are presented in the following text. On the other hand, proposed 5th order185

fullband differentiator is compared to only two differentiators of the same order that could be found in the
existing literature. Since the overall order of the proposed IIR fullband differentiators equals 2N − 1, Eq. 1,
the order of the corresponding all-pass filter AN (z) equals 2 and 3 in case of the 3rd and 5th order fullband
differentiator, respectively.

Magnitude and phase responses of the proposed and existing 3rd order IIR fullband differentiators190

from [15, 8, 10, 12] are presented in Fig. 8A and Fig. 8B, respectively. Corresponding magnitude and phase
response error functions are given in Fig. 9. As can be seen on Fig. 9B, the proposed 3rd order IIR fullband
differentiator with equiripple magnitude response exhibits lower phase response linearity error compared to
the all-pass based differentiator from recently published paper [15]. However, the magnitude response error
of the proposed differentiator is slightly higher. On the other hand, phase response linearity errors of the195

differentiators from [8, 10, 12] are lower compared to the phase linearity error of the proposed one, while
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Figure 6: (A) Magnitude and (B) phase responses of the recursive fullband differentiator, for N = 3, 6, 8.
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Figure 7: (A) Absolute magnitude response error function and (B) phase response linearity error function of the recursive
fullband differentiator, for N = 3, 6, 8.

proposed differentiator exhibits lower magnitude response error at frequencies close to Nyquist frequency
compared to differentiator from [8].

Magnitude and phase responses of the 5th order proposed and existing differentiators of the same order
from [15, 13] are shown in Fig. 10A and Fig. 10B, respectively. Corresponding magnitude and phase response200

error functions are given in Fig. 11. As obvious from Figs. 10A and 11A, the proposed differentiator exhibits
the highest magnitude response error compared to differentiators from [15, 13], while its phase response
linearity error is by far the lowest, Figs. 10B and 11B.
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Figure 8: (A) Magnitude and (B) phase responses of the 3rd order proposed and existing recursive fullband differentiators.
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Figure 9: (A) Absolute magnitude response error function and (B) phase response linearity error function of the 3rd order
proposed and existing recursive fullband differentiators.

Coefficients of the proposed and existing IIR fullband differentiators are given in Tab. 2, while needed
number of multiplications required by those differentiators, maximum absolute magnitude response and205

phase response linearity errors are given in Tab. 3. Evidently, proposed design requires less multiplications
compared to fullband differentiators from [15, 8, 10, 13].
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Figure 10: (A) Magnitude and (B) phase responses of the 5th order proposed and existing IIR fullband differentiators.
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Figure 11: (A) Absolute magnitude response error function and (B) phase response linearity error function of the 5th order
proposed and existing IIR fullband differentiators.

4.2. IIR low-pass differentiators

Magnitude and phase responses and the corresponding error functions of two low-pass differentiators
obtained by cascading 5th order proposed fullband differentiators H

(
z, W(1)

)
and H

(
z, W(2)

)
, where210

W(1) = [1, 1, 1, 1] , (40)

W(2) = [100, 100, 100, 1] , (41)
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Table 2: Coefficients of the proposed and existing recursive fullband differentiators.
Order Reference Numerator coefficients Denominator coefficients

3rd Proposed 0.13413, 1.09438, −1.09438, −0.13413 1, 0.30329, −0.08539
Barsainya et al. [15] 0.53177, 0.8672, −0.8672, −0.53177 1, 1.1022, 0.34957, 0.02675
Gupta et al. [8] 1, −1, 0, 0 0.87608, 0.14690, −0.03458, 0.01269
Al-Alaoui and Baydoun [10] 1.1533, −0.4432, −0.706, −0.0041 1, 0.7981, 0.0884, 0
Nongpiur et al., example 3 [12] −0.0895, 1.1668, −0.0889, −0.9883 1, 0.9714, 0.0782, −0.0104

5th Proposed
−0.07838, 0.09957, 1.09359,
−1.09359, −0.09957, 0.07838

1, 0.30379,
−0.06339, 0.04990

Barsainya et al. [15]
0.1295, 0.6828, 0.6019,
−0.6019, −0.6828, −0.1295

0.6541, 1.3175, 0.9691,
0.3156, 0.0435, 0.0018

Devate et al. [13]
0.25, 2.1408, 2.0522,
−2.0523, −2.1407, −0.2499

2.2257, 4.1683, 2.63,
0.6353, 0.0517, 0

Table 3: Number of multiplications required by the proposed and existing recursive fullband differentiators, maximum absolute
magnitude and phase response errors.

Order Reference No. of multipliers Max. mag. error Max. phase error, rad

3rd Proposed 3 0.1043 0.3684
Barsainya et al. [15] 4 0.0993 1.1389
Gupta et al. [8] 4 0.2071 0.1895
Al-Alaoui and Baydoun [10] 6 0.0584 0.1799
Nongpiur et al., example 3 [12] 6 0.0959 0.0550

5th Proposed 4 0.0757 0.3677
Barsainya et al. [15] 6 0.0835 2.1001
Devate et al. [13] 11 0.0293 1.9818

with the 3rd order low-pass filter Q3 (z) having a passband edge frequency equal to ωp = 0.5π are shown
in Figs. 12 and 13. As expected, the low-pass differentiator G

(
z, W(2)

)
= H

(
z, W(2)

)
Q3 (z) exhibits

a lower absolute magnitude response and phase response linearity errors in the passband compared to
low-pass differentiator G

(
z, W(1)

)
= H

(
z, W(1)

)
Q3 (z), due to different weighting factors utilized in the

corresponding fullband differentiator design. Namely, in case of fullband differentiator H
(
z, W(2)

)
, the215

choice of weighting factors allows the passband magnitude response error minimization which is, at some
extent, followed by the phase response linearity improvement.
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Figure 12: (A) Magnitude and (B) phase responses of the IIR low-pass differentiators G
(
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)
and G
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.
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The absolute magnitude response error function and the phase response linearity error function of the
low-pass differentiators obtained by cascading 7th order proposed IIR fullband differentiator H

(
z, W(3)

)
,

where220

W(3) = [100, 100, 100, 100, 1] , (42)

with 1st, 2nd and 3rd order low-pass filter QL (z) with the passband edge frequency ωp = 0.35π, are given
in Fig. 14. As can be observed, low-pass differentiator’s phase response linearity is primarily affected by
the nonlinearity of the corresponding Chebyshev I low-pass filter’s phase response, Fig. 14B, while better
suppression of the high frequency noise is achieved if the order of the low-pass filter L is higher, Fig. 15A.
Therefore, a compromise should be made between the phase response linearity error of the proposed low-225

pass differentiators and their selectivity in the stopband if the Chebyshev I low-pass filter (or any other IIR
low-pass filter type) is used. Phase responses of obtained low-pass differentiators are given in Fig. 15B.

Regarding the convergence behavior of the proposed algorithm when weighting factors are equal to

Wk =

{
100, k ≤ N
1, k = N + 1

, (43)

for N from 1 to 40, fast convergence is observed. Namely, it shows that required number of iterations is less
than or equal to 7 for each N from 1 to 40 and ∆tol = 10−10.230

4.2.1. Comparison with existing low-pass differentiators

Low-pass differentiators obtained by cascading second order Chebyshev I low-pass filter Q2 (z) with the
proposed third order IIR fullband differentiator characterized by the weighting factors’ vector W(2), Eq. 41,
are compared to IIR low-pass differentiators of the 5th order from [24]. Magnitude and phase responses of
those differentiators and the corresponding error functions are presented in Figs. 16 and 17, respectively.235

As can be observed in Fig. 16A, 5th order low-pass differentiators from [24] exhibit better suppression of
the high frequency noise compared to the low-pass differentiators obtained by cascading proposed fullband
differentiator with Chebyshev I low-pass filters. On the other hand, the absolute magnitude response errors,
Fig. 17A, and especially the phase linearity errors, Fig. 17B, are considerably lower in case of proposed
low-pass differentiators.240

14



0 0.2 0.4
0

2

4
·10−2

ω/π, rad

ξ
m

a
g
(ω

)

(A)

L = 1

L = 2

L = 3

0 0.175 0.35
0

0.08

0.16

ω/π, rad

ξ
p
h
(ω

),
ra

d

(B)

Figure 14: (A) Absolute magnitude response error function and (B) phase linearity error function of the low-pass differentiator

obtained by cascading the proposed fullband differentiator H
(
z, W(3)

)
with the low-pass filter QL (z) for L = 1, 2, 3.
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Figure 15: (A) Magnitude and (B) phase responses of the low-pass differentiator obtained by cascading the proposed fullband

differentiator H
(
z, W(3)

)
with the low-pass filter QL (z) for L = 1, 2, 3.

The coefficients of the considered 5th order low-pass differentiators are given in Tab. 4, while the needed
number of multiplications required by those differentiators are given in Tab. 5.
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Figure 16: (A) Magnitude and (B) phase responses of the proposed and existing low-pass differentiators of the 5th order.
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Figure 17: (A) Absolute magnitude response error functions and (B) phase linearity error functions of the proposed and existing
low-pass differentiators of the 5th order.

5. Conclusion

Although the proposed IIR fullband differentiator design method does not result in transfer function
having linear (or nearly-linear) phase response, nor the phase response linearity error can be controlled245

for ω ∈ (0, π), it yields lower phase response linearity error compared to some of the existing IIR fullband
differentiators. On the other hand, the magnitude response error can be controlled by varying the order of the
corresponding all-pass filter AN (z). To facilitate the determination of the needed order of the all-pass filter,
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Table 4: Coefficients of the 5th order low-pass differentiators from [24] and low-pass differentiators of the same order obtained
by cascading 3rd order proposed fullband differentiator with 2nd order Chebyshev I low-pass filters.

ωp Reference Numerator coefficients Denominator coefficients

0.3π Proposed
0.0101, 0.3379, 0.3278,
−0.3278, −0.3379, −0.0101

1, 0.1791, 0.1645,
0.0594, −0.0049

Al-Alaoui [24]
0.066, 0.198, 0.132,
−0.132, −0.198, −0.066

1, −0.3332, 0.3041,
0.1178, −0.0454, −0.0137

0.4π Proposed
0.0141, 0.4714, 0.4573,
−0.4573, −0.4714, −0.0141

1, 0.6052, 0.2966,
0.0541, −0.0053

Al-Alaoui [24]
0.1178, 0.3534, 0.2356,
−0.2356, −0.3534, −0.1178

1, 0.3021, 0.4396,
0.143, −0.0093, −0.0053

0.5π Proposed
0.0178, 0.5974, 0.5795,
−0.5795, −0.5974, −0.0178

1, 0.9623, 0.4541,
0.0623, −0.0067

Al-Alaoui [24]
0.2032, 0.6096, 0.4064,
−0.4064, −0.6096, −0.2032

1, 0.9515, 0.8383,
0.2321, 0.0255, −0.0004

Table 5: Number of multiplications required by the 5th order low-pass differentiators from [24] and low-pass differentiators of
the same order obtained by cascading 3rd order proposed fullband differentiator with 2nd order Chebyshev I low-pass filters,
maximum absolute magnitude and phase response errors.

ωp Reference No. of multipliers Max. mag. error Max. phase error, rad

0.3π Proposed 5 0.0119 0.0547
Al-Alaoui [24] 6 0.0059 0.1094

0.4π Proposed 5 0.0154 0.0779
Al-Alaoui [24] 6 0.0291 0.1846

0.5π Proposed 5 0.0080 0.1141
Al-Alaoui [24] 6 0.0273 0.2054

characterizing the IIR fullband differentiator with equiripple magnitude response such that its maximum
magnitude error is less than or equal to some prescribed value, the inequality given by Eq. 39 is derived. The250

results of fullband differentiators’ comparison imply that the proposed IIR fullband differentiators require
less multiplications compared to the existing fullband differentiators.

Since the phase response of the proposed IIR fullband differentiators is nearly-linear function of frequency
for ω small, IIR low-pass differentiators obtained by the cascading approach are also considered. It is
shown that the passband magnitude response error of such low-pass differentiators can be decreased by an255

appropriate choice of the weighting factors’ vector for the corresponding proposed IIR fullband differentiators
design. Furthermore, this improvement of the passband magnitude response is followed by the improvement
of the passband phase response of the low-pass differentiator. Obtained IIR low-pass differentiators, apart
from requiring the less number of multiplications, exhibit lower passband magnitude response error and the
lower phase response linearity error compared to some of the existing low-pass differentiators of the same260

order.
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