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Ivana Kostić2†
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University of Nǐs, Aleksandra Medvedeva 14, 18000 Nǐs, Serbia.
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Abstract

In this paper, design of infinite impulse response lowpass differentiators that
can be realized by parallel connection of two allpass filters whose orders dif-
fer by two, where one of the allpass branches is pure delay, is considered. As
adopted structure of proposed lowpass differentiators allows formulation of their
magnitude and phase responses as functions of allpass filter phase response, a
set of nonlinear equations in unknown allpass filter coefficients is derived and
iteratively solved in a way that magnitude response approximates the ideal one
in weighted Chebyshev sense, both in passband and stopband. On the other
hand, passband phase response linearity is shown to be related to the maximum
of the magnitude response, which can be directly controlled by an additional
design parameter. Design examples reveal that proposed infinite impulse response
lowpass differentiators of low order can have very low relative passband magni-
tude errors and nearly-linear phases, while results of comparison with existing
lowpass differentiators show that proposed differentiators usually require fewer
multiplications.

Keywords: digital lowpass differentiator, parallel allpass structure, digital allpass
filter, nearly-linear phase, relative magnitude response error minimization
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1 Introduction

High frequency noise filtering along with differentiation at low frequencies is required
in various practical applications, among which are physiological signal processing [7,
11, 13, 19], extraction of velocity and acceleration data [16], edge-detection in image
processing [6], and frequency estimation [14]. The frequency response of an ideal IIR
lowpass differentiator having nonzero transition region width can be formulated as

H̃
(
ejω

)
=

{
jωe−jωτ , ω ≤ ωp

0, ω ≥ ωs
, (1)

where τ is the passband group delay, while ωp and ωs are passband and stopband
edge frequencies, respectively, and it can be approximated by the frequency response
of either finite or infinite impulse response (IIR) filter. While a perfectly linear phase
cannot be obtained by IIR filter, IIR lowpass differentiators are preferred over finite
impulse response ones in applications where some amount of passband phase response
nonlinearity can be tolerated, due to significantly lower filter order and lower group
delay.

The majority of the IIR lowpass differentiators design methods belong to one of
the following four approaches. The conventional approach is to cascade IIR fullband
differentiator with the low-order lowpass filter [5, 17], while inversion-based design
methods [2, 4, 10] start from the transfer function of IIR lowpass integrator, which
is then inverted and stabilized by reflecting the unstable poles inside the unit circle.
Methods of the third approach, i.e. the optimal methods [1, 5, 9, 12, 16, 18, 21], for-
mulate the IIR lowpass differentiator design problem of simultaneous minimization of
magnitude and phase response as the minimization problem in unknown filter coeffi-
cients. In [1, 5, 16], the numerator of the lowpass differentiator is assumed to be the
linear phase filter, while denominator coefficients are determined using classical [5] and
metaheuristic [1, 16] optimization methods. Method presented in [21] formulates the
design problem in quadratic form without frequency sampling, while the method pre-
sented in [12] minimizes the group-delay deviation with respect to the average group
delay under the constraints that the maximum relative passband magnitude error and
average squared stopband magnitude response are below prescribed values. Another
two optimal methods are presented in [9, 18], where lowpass differentiators based on
parallel allpass structure are proposed. Finally, as the maximum-flatness-based meth-
ods provide the lowest approximation error at frequencies about some center frequency,
methods of the fourth approach [9, 20, 22] consider design of the maximally flat IIR
lowpass differentiators.

The assumption, recently introduced by authors in [18], that IIR lowpass differen-
tiator can be realized by parallel connection of two allpass filters of the same order,
with a pure delay in one of the allpass branches, has led to the development of a
method for design of even-order nearly-linear phase allpass-based IIR lowpass differen-
tiators that usually require fewer multiplications compared to differentiators obtained
by other design approaches. An additional allpass structure, introduced in [9], sug-
gests that lowpass differentiation can be performed by subtracting the output of the
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second-order allpass filter from the input signal, i.e. that the design problem of second-
order IIR lowpass differentiator can be reduced to the design of the allpass filter of
the same order. As discussed in [9], differentiators obtained in such a way are superior
to the second-order differentiators from [18] in every aspect except the phase response
linearity.

The novelty of this study is generalization of the equiripple design method dis-
cussed in [9] to an arbitrary order of the lowpass differentiator that can be realized
by parallel connection of two allpass filters whose orders differ by two, where allpass
branch of the lower order is a pure delay. This structure allows formulation of the dif-
ferentiator magnitude and phase responses as functions of the corresponding allpass
filter phase response and the value of an additional design parameter, which enables
simultaneous minimization of both magnitude and phase response errors. Additionally,
aforementioned generalization provides a means of controlling the stopband behavior
of lowpass differentiators as the stopband edge frequency becomes one of the design
parameters.

The rest of the paper is structured as follows. The problem formulation of the
allpass-based nearly-linear phase IIR lowpass differentiator with magnitude response
approximating the ideal one in weighted Chebyshev sense both in passband and stop-
band is discussed in Sec. 2. Proposed design method is presented in Sec. 3, while design
examples and comparison with the existing lowpass differentiators are given in Sec. 4.
Finally, conclusions are drawn in Sec. 5.

2 Problem formulation

Transfer function of the IIR lowpass differentiators considered in this paper is assumed
to be of the following form

H (z) =
γ

2

(
z−(L−2) −A (z)

)
, γ > 0, (2)

as depicted in Figure 1, where γ is the maximum of the magnitude response, while
A (z) is the Lth order transfer function of the stable allpass filter having distinct poles

A (z) = z−L 1 +
∑L

i=1 aiz
i

1 +
∑L

i=1 aiz
−i
, (3)

whose phase response is denoted by

ϕ (ω) = arg
{
A
(
ejω

)}
= −Lω + 2arctan

∑L
i=1 ai sin (iω)

1 +
∑L

i=1 ai cos (iω)
. (4)

Substituting z = ejω in (2), phase and magnitude response of the considered IIR
lowpass differentiators can be formulated as functions of the corresponding allpass
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Fig. 1 Proposed realization structure of the IIR lowpass differentiator.

filter’s phase response ϕ (ω) = arg
{
A
(
ejω

)}
as follows

φ (ω) = arg
{
H

(
ejω

)}
=
ϕ (ω)− (L− 2)ω + π

2
, (5)

∣∣H
(
ejω

)∣∣ = γ

∣∣∣∣sin
ϕ (ω) + (L− 2)ω

2

∣∣∣∣ . (6)

Now, since the phase response of the stable allpass filter A (z) is monotonically decreas-
ing function satisfying ϕ (0) = 0 and ϕ (π) = −Lπ [15], from (5) and (6) it follows
that φ (0) = π/2 and

∣∣H
(
ej0

)∣∣ =
∣∣H

(
ejπ

)∣∣ = 0, i.e. the frequency response of the
proposed IIR lowpass differentiators matches the ideal one at ω = 0 and ω = π, note
(1). Additionally, as ϕ (ω) + (L− 2)ω equals 0 at ω = 0 and −2π at ω = π, there
exists frequency point ω∗, 0 < ω∗ < π, where ϕ (ω∗) + (L− 2)ω∗ = −π, that is where
maximum of the magnitude response occurs,

∣∣H
(
ejω

∗)∣∣ = γ.
For the magnitude response of the proposed IIR lowpass differentiators given by

(6) to approximate the ideal one,

∣∣∣H̃
(
ejω

)∣∣∣ =
{
ω, ω ≤ ωp

0, ω ≥ ωs
, (7)

note (1), the phase response ϕ (ω) of the allpass filter A (z) should approximate either

ϕ̃1 (ω) or ϕ̃2 (ω) defined as

ϕ̃1,2 (ω) =

{
− (L− 2)ω ∓ 2 arcsin

ω

γ
, ω ≤ ωp

− (L− 2)ω − 2π, ω ≥ ωs

, (8)

where parameter γ obviously needs to satisfy γ ≥ ωp. Note that ϕ̃1 (ω) is monotonically

decreasing regardless the value of the parameter γ for ω ∈ (0, π), while ϕ̃2 (ω) can be
made so by a suitable choice of the parameter γ for L > 2.

In this paper, an iterative algorithm for the determination of the allpass filter A (z)
coefficients vector

aaa =
[
a1 a2 . . . aL

]T
, (9)

for the predetermined value of the parameter γ is derived, such that the magnitude
response of the obtained IIR lowpass differentiator approximates the ideal one in
the weighted Chebyshev sense both in passband and stopband, i.e. such that the
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magnitude response error function

ε (ω, aaa) =W (ω)
(∣∣H

(
ejω, aaa

)∣∣−
∣∣∣H̃

(
ejω

)∣∣∣
)
, (10)

satisfies
|ε (ω̂k, aaa)| = δp, (11)

for k = 1, 2, . . . , m, and
ε (ωk, aaa) = δs, (12)

for k = 1, 2, . . . , L−m+ 2, where

W (ω) =

{
1/ω, ω ≤ ωp

1, ω ≥ ωs

(13)

is weighting function that allows simultaneous minimization of the relative pass-
band and absolute stopband magnitude response errors, δp = max

ω≤ωp

|ε (ω, aaa)| and
δs = max

ω≥ωs

ε (ω, aaa) are passband and stopband weighted Chebyshev norms, respec-

tively, m ≤ L+ 1 is the number of sign-alternating extrema in passband. Frequencies
at which sign-alternating extremal values of ε (ω) occur in passband and stopband
are ω̂ωω =

[
ω̂1 ω̂2 . . . ω̂m

]
and ωωω =

[
ω1 ω2 . . . ωL−m+2

]
, respectively, while 0 ≤ ω̂1 <

ω̂2 < · · · < ω̂m ≤ ωp and ωs ≤ ω1 < ω2 < · · · < ωL−m+2 < π. Regarding the choice
of the weighting function, note that lowpass differentiators are usually designed with
constant relative passband magnitude response error [9, 12].

Since the relative passband magnitude error of the lowpass differentiators is being
minimized, to circumvent the magnitude response error function given by (10) to be
indeterminate for ω = 0, sine term of the magnitude response is rewritten as

sin
ϕ (ω, aaa) + (L− 2)ω

2
= ωλ (ω, aaa)

= ω
−sincω +

∑L
n=2 (n− 1) an sinc (ω (n− 1))√(

1 +
∑L

n=1 an cos (nω)
)2

+
(∑L

n=1 an sin (nω)
)2
,

(14)
where

sincx =

{
1, x = 0

sinx/x, x ̸= 0
. (15)

Note that the transfer function (2) of the proposed IIR lowpass differentiators
requires at least 2L− 2 delays and L+ 1 or L multiplications depending on the value
of the parameter γ. Namely, if γ is expressed as the sum of a few power-of-two terms,
required number of multiplications reduces to L.
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2.1 Passband phase response linearity error

If
∣∣H

(
ejω

)∣∣ ≈
∣∣∣H̃

(
ejω

)∣∣∣, the passband phase response of the IIR lowpass differentiator

φ (ω), given by (5), approximates

φ̃1,2 (ω) =
ϕ̃1,2 (ω)− (L− 2)ω + π

2
=
π

2
− (L− 2)ω ∓ arcsin

ω

γ
, (16)

which is nearly-linear function of frequency for γ ≫ ωp. On the other hand, to avoid
dynamic range problem, the value of the parameter γ should be chosen with great con-
cern. Furthermore, as the maximum of magnitude response, occurring at the frequency
ω∗ ≥ ωp, equals γ, γ should be close to ωp to avoid excessive gain in the transition
region or stopband. Therefore, proposed allpass-based IIR lowpass differentiators, i.e.
the ones that can be realized by the structure given in Figure 1, are not capable of
providing very low passband phase response linearity errors without increasing the
maximum of the magnitude response beyond ωp.

To quantify the previous claim, let us determine the lower and upper margin
functions of the passband phase response linearity function defined as [12, 18]

ζ (ω) = φ (ω)−
(π
2
− ωτ

)
, (17)

where τ is the average passband group delay

τ =
φ (0)− φ (ωp)

ωp
, (18)

when relative passband magnitude response error is lower than δp, i.e. when

− arcsin
ω (1 + δp)

γ
≤ ϕ (ω) + (L− 2)ω

2
≤ − arcsin

ω (1− δp)
γ

, (19)

for ω ≤ ωp, note (10) and (24). Substituting (5) and (18) in (17), passband phase
response linearity function becomes

ζ (ω) =
ϕ (ω)

2
− ω

ωp

ϕ (ωp)

2
, (20)

while its upper and lower margin functions can be determined by means of (19) as

U
(
y =

ω

ωp

)
= y arcsin

1 + δp
x
− arcsin

y (1− δp)
x

, (21)

L (y) = y arcsin
1− δp
x
− arcsin

y (1 + δp)

x
, (22)
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where x = γ/ωp. Plots of

f (x, δp) =
180

π
·max

y≤1
{|L (y, x, δp)| , |U (y, x, δp)|} , (23)

for δp ∈ {0, 3%, 6%, 9%} and (1 + δp) ≤ x ≤ 2 are shown in Figure 2. Note that
maximum passband phase response linearity error max

ω≤ωp

|ζ (ω, γ, δp)| is lower than

f (x, δp), while notations ζ (ω, γ, δp), L (y, x, δp) and U (y, x, δp) are used to empha-
size the dependence of ζ (ω) on γ and δp, and L (y) and U (y) on x = γ/ωp and δp. It
can be observed from these plots that even in a limiting case, that is for δp = 0, if the
passband phase response error is to be lower than 1 degree, γ should be higher than
1.5ωp. Furthermore, with increase of maximum relative passband magnitude response
error required γ/ωp ratio increases.
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20
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30

x = γ/ωp

f
(x
,
δ p
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d
eg

δp = 0

δp = 3%

δp = 6%

δp = 9%

Fig. 2 Maximum absolute value of lower and upper margin functions for ω/ωp ≤ 1 as a function of
γ/ωp for four values of δp.

3 Design method

Mathematical background of the proposed design method depends on whether ϕ (ω, aaa)

is assumed to approximate ϕ̃1 (ω) or ϕ̃2 (ω) given by (8). However, as ϕ̃2 (ω) is not
monotonically decreasing function for every L and γ, it is adopted that ϕ (ω, aaa) needs

to approximate ϕ̃1 (ω). In this case, as ϕ̃1 (ω) is less than − (L− 2)ω in passband,
and reasonable assumptions that ϕ (ω, aaa) is also less than − (L− 2)ω in passband and
that ϕ (ω,aaa) > − (L− 2)ω − 2π in the transition region are adopted, the magnitude
response (6) of the proposed IIR lowpass differentiators can be rewritten as

∣∣H
(
ejω, aaa

)∣∣ = −γωλ (ω, aaa) , (24)
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for ω ≤ ωs. Now, the magnitude response error function (10) at frequencies where its
sign-alternating extremal values occur can be rewritten as

ε (ω̂k, aaa) = −1− γλ (ω̂k, aaa) , (25)

for k = 1, 2, . . . , m, and

ε (ωk, aaa) = (−1)k+1
ωkγλ (ωk, aaa) , (26)

for k = 1, 2, . . . , L−m+ 2.
Therefore, (11) and (12), which characterize the proposed design method, can be

rewritten by means of previous equations as

λ (ω̂k, aaa) + (−1)p+k δp
γ

= − 1

γ
, k = 1, 2, . . . , m, (27)

λ (ωk, aaa) + (−1)k δs
γωk

= 0, k = 1, 2, . . . , L−m+ 2, (28)

where p determines whether the first extremal value of the passband magnitude
response error function is maximum (p = 1) or minimum (p = 0). Evidently, a sys-
tem of nonlinear equations given by (27) and (28) consists of L+2 equations in L+2
unknowns. It shows that it can be efficiently solved by following exchange algorithm:

1. Determine aaa′ such that ε (ω, aaa′) exhibits at leastm and L−m+2 extremal values in
the passband and stopband, respectively. As following relation can be established
between the phase response and coefficients of the allpass filter AL (z),

L∑

i=1

ai sin
ϕ (ω) + (L− 2i)ω

2
= − sin

ϕ (ω) + Lω

2
, (29)

note (4), unknown coefficients vector aaa′ can be determined as a solution to the

system of linear equation obtained by setting ϕ (ω) = ϕ̃1 (ω) at m−1 and L−m+1
frequency points in passband and stopband, respectively,

ωk =




(k + 2)

ωp

m+ 2
, k < m

ωs + (k −m+ 1)
π − ωs

L−m+ 2
, k ≥ m

, (30)

for k = 1, 2, . . . , L.
2. Determine frequencies ω̂ωω

′
=

[
ω̂′
1 ω̂

′
2 . . . ω̂

′
m

]
and ωωω′ =

[
ω′
1 ω

′
2 . . . ω

′
L−m+2

]
where

m and L − m + 2 sign-alternating extremal values of ε (ω, aaa′) occur in passband
and stopband, respectively. It was concluded empirically that ε (ω, aaa′) can have one
excess extremum in passband/stopband and that following heuristic approach can
be used to select the required number of sign-alternating extremal values:
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– if the first- or last-two extremal values in passband/stopband are of the same
sign, then the first or last extrema is not taken into consideration, respectively.

– if there are m + 1 sign-alternating extremal values in the passband, the lower
between the first and last extrema is not taken into consideration for ωp < π/2,
otherwise, the last extrema is not taken into consideration.

– if there are L−m+2 sign-alternating extremal values in the stopband, the lower
between the first and last extrema is not taken into consideration.

3. Determine coefficients vector aaa = aaa′ +∆aaa by solving the following system of linear
equations

[
Ψ̂ΨΨ (aaa′) γ−1η̂ηη 000m×1

ΨΨΨ(aaa′) 000(L−m+2)×1 γ
−1ηηη

]

∆aaa
δp
δs


 = −

[
γ−1 · 111m×1 + λ̂λλ (aaa′)

λλλ (aaa′)

]
, (31)

obtained by linearization of (27) and (28) about aaa′ and adopting ω̂ωω = ω̂ωω
′
and ωωω = ωωω′.

In previous equation Ψ̂ΨΨ (aaa′) =
[
ψ̂ki (aaa

′)
]
, ΨΨΨ (aaa′) =

[
ψki (aaa

′)
]
, λ̂λλ (aaa′) =

[
λ̂k (aaa

′)
]
,

λλλ (aaa′) =
[
λk (aaa

′)
]
, η̂ηη =

[
η̂k
]
and ηηη =

[
ηk

]
are m × L, (L−m+ 2) × L, m × 1,

(L−m+ 2)× 1, m× 1 and (L−m+ 2)× 1 matrices, respectively, with elements

ψ̂ki (aaa
′) =

∂λ (ω̂′
k, aaa

′)
∂ai

, ψki (aaa
′) =

∂λ (ω′
k, aaa

′)
∂ai

, (32)

λ̂k (aaa
′) = λ (ω̂′

k, aaa
′) , λk (aaa

′) = λ (ω′
k, aaa

′) , (33)

η̂k = (−1)p+k
, ηk =

(−1)k
ω′
k

. (34)

4. If max |∆aaa| ≤ ∆tol, where ∆tol > 0 is the prescribed tolerance, the algorithm
converged to the solution. Otherwise, set aaa′ ← aaa and proceed to the step 2.

Note that since only the first m sign-alternating extremal values are considered for
ωp > π/2, utilization of the proposed design method algorithm may not result in
a valid transfer function (i.e. the one with relative magnitude response error at the
passband edge higher than δp). The mentioned limitation will be considered in more
detail in the following section.

4 Design examples and comparison with the
existing IIR lowpass differentiators

In this section, examples of proposed allpass-based IIR lowpass differentiators are given
and some conclusions regarding the impact of design parameters L, ωp, ωs, γ, and m
on the passband phase response linearity and relative passband magnitude response
errors are drawn. ∆tol equals 10

−10 in all examples. Additionally, a comparison with
the existing allpass-based IIR lowpass differentiators from [18] and nearly-linear phase
IIR lowpass differentiators from [5, 12] is presented. Here, it should be noted that
second-order IIR lowpass differentiators obtained by the equiripple design method
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from [9] are the same ones obtained by the proposed design method for L = 2 and
m = 3.

Various lowpass differentiators are compared in terms of the required number of
multiplications and delay elements, maximum peak-to-peak passband phase response
error in degrees

η =
180

π

[
max
ω≤ωp

ζ (ω)− min
ω≤ωp

ζ (ω)

]
, (35)

average passband group delay

τ =
L− 2

2
− ϕ (ωp)

2ωp
, (36)

note (18), as well as values of δp = max
ω≤ωp

|ε (ω, aaa)| and δs = max
ω≥ωs

ε (ω, aaa). Additionally,

average squared stopband magnitude response

Psb =
1

π − ωp

∫ π

ωp

∣∣H
(
ejω

)∣∣2 dω, (37)

is used to properly characterize differentiators from [5, 12] in the stopband, as these
differentiators do not consider stopband edge frequency as design parameter. Note that
proposed allpass-based lowpass differentiators have min

ω≤ωp

ζ (ω) equal to zero, as phase

response of stable allpass filter is monotonically decreasing function of frequency, note
(20).

In the first example, the proposed method is used to design IIR lowpass differ-
entiators with lowest possible relative passband magnitude response error, i.e. the
case when m = L + 1 is considered. As a case when L = 2 and m = 3 is discussed
in [9], fourth-order IIR lowpass differentiators (L = 3) of various passband edges
ωp ∈ {0.2π (1 + k/13) | 0 ≤ k ≤ 39} and γ/ωp ∈ {1.02, 1.04, 1.06} are considered here.
Note that for m = L+ 1 (31) reduces to

[
Ψ̂ΨΨ (aaa′) γ−1η̂ηη

] [
∆aaa
δp

]
= −γ−1 · 111m×1 − λ̂λλ (aaa′) , (38)

as stopband edge frequency is redundant parameter. Plots of δp, η and Psb as functions
of ωp, for three values of γ/ωp are shown in Figure 3. As can be observed from these
plots, with the increase of the parameter γ, maximum relative passband magnitude
response error δp and maximum passband phase response error η decrease, while aver-
age squared stopband magnitude response Psb increases. δp is less than 0.86%, 0.65%
and 0.51%, while η is less than 10.52 (f (1.02, 0.86%) = 14.72), 8.93 (f (1.04, 0.65%) =
10.84) and 7.76 (f (1.06, 0.51%) = 8.96) degrees, for 0.2π ≤ ωp ≤ 0.8π and γ/ωp equal
to 1.02, 1.04, 1.06, respectively. As expected, the proposed fourth-order IIR lowpass
differentiators have lower relative passband magnitude response error compared to the
second-order lowpass differentiators [9].

In the second example, the proposed method is used to design sixth-order IIR low-
pass differentiators of various passband edges ωp ∈ {0.2π (1 + 3k/59) | 0 ≤ k ≤ 59},
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Fig. 3 Proposed fourth-order allpass-based IIR lowpass differentiators. (A) δp, (B) η and (C) Psb,
as functions of ωp ∈ [0.2π, 0.8π] for three values of γ/ωp and L = 3, m = 4.

ωs = ωp + 0.18π, γ/ωp ∈ {1.02, 1.04, 1.06} and m = L = 4. Plots of δp, η and δs as
functions of ωp, for three values of γ/ωp ratio are shown in Figure 4. Since only the
first m sign-alternating extremal values are considered for ωp > π/2, utilization of the
proposed design method does not result in a valid transfer function (i.e. the relative
magnitude response at the passband edge is higher than δp obtained by the proposed
algorithm) for ωp > 0.7π (γ/ωp = 1.02), ωp > 0.74π (γ/ωp = 1.04) and ωp > 0.76π
(γ/ωp = 1.06), ωs = ωp + 0.18π, L = m = 4. While parameters L, m and the tran-
sition region width ωs − ωp also affect whether relative magnitude response error at
the passband edge is higher than δp obtained by the algorithm, it is more probable
to happen for ωp closer to Nyquist frequency and γ/ωp closer to one. From Figure 4
it can be also concluded that for L ̸= m+ 1, δp does not necessarily decrease when γ
increases. On the other hand, when γ increases, η decreases, while δs increases.

In the third example, fourth-order allpass-based IIR lowpass differentiators of
various stopband edges ωs ∈ {0.5π (1 + 0.6k/19) | 0 ≤ k ≤ 19}, ωp = 0.4π, γ/ωp ∈
{1.02, 1.04, 1.06} and m = L = 3 are considered. Plots of δp, η and δs are shown in
Figure 5. As expected, with the increase of the stopband edge frequency, δp, η and δs
decrease.

Finally, in the fourth example, application of the proposed fourth-order lowpass
differentiator with a real input - the electrooculogram (EOG) signal is tested, since
its derivative is required for example to detect the direction of eye movements [11].
EOG signal is obtained from [8], and its sampling frequency equals 100Hz. Lowpass
differentiator is designed using ωp = 0.025π, ωs = 0.4π, L = m = 3 and γ = ωp.
Input and output signals of the lowpass differentiator are shown in Figure 6. Evidently,
lowpass differentiation is required due to existence of high frequency noise in the input
EOG signal.
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4.1 Comparison with the allpass-based IIR lowpass
differentiators from [18]

In this subsection, a comparison of the proposed nearly-linear phase allpass-based IIR
lowpass differentiators with the ones from [18] is presented. These differentiators are
also designed by minimizing the weighted Chebyshev norms both in the passband and
the stopband, while their transfer function can be expressed as

H1 (z) =
γ1
2

[
A1 (z)− z−M

]
, (39)
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Fig. 6 EOG signal and output of the proposed fourth-order lowpass differentiator.

where A1 (z) is the transfer function of Mth degree allpass filter.
In the fifth example, the proposed lowpass differentiators are compared to eighth-

order (M = 4) differentiator from [18] with passband and stopband edge frequencies
ωp = 0.3π and ωs = 0.57π. Three competing differentiators are designed: a) L =
m = 3, γ = 1.118, b) L = m = 4, γ = 1.125, and c) L = 5, m = 4, γ = 2.
The results of comparison are presented in Table 1 and Figure 7. From these results,
it can be observed that eighth-order lowpass differentiator designed using proposed
method outperform the existing one of the same order from [18] in all terms except
the required number of multiplications. On the other hand, proposed fourth and sixth-
order differentiators have the same or smaller values of δp, δs and τ , while passband
phase response errors of proposed differentiators are higher compared to differentiator
from [18].

Table 1 ωp = 0.3π, ωs = 0.57π. Results of comparison of proposed differentiators
with lowpass differentiator from [18].

Parameters
Proposed

L = m = 3,
γ = 1.118

Proposed
L = m = 4,
γ = 1.125

Proposed
L = 5, m = 4,

γ = 2
[18]

δp 2.41% 0.03% 0.33% 2.41%
δs 5.64% 11.35% 3.49% 11.94%
τ 2.10 3.05 3.52 3.6
η 6.62◦ 4◦ 0.49◦ 0.62◦

no. of multiplications 4 4 5 4
no. of delays/filter order 4 6 8 8

In the sixth example, proposed lowpass differentiators are compared to the sixth-
order (M = 3) lowpass differentiator from [18] with the passband and stopband edge
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Fig. 7 ωp = 0.3π, ωs = 0.57π. (A) Magnitude responses, (B) relative passband magnitude response
errors, and (C) passband phase response linearity errors of the IIR lowpass differentiator from [18]
(solid line) and the proposed ones (dashed, dash dot dotted, dotted lines correspond to 4th, 6th and
8th order differentiators, respectively).

frequencies ωp = 0.5π and ωs = 0.725π. Two competing differentiators of the sixth-
order are designed: a) L = m = 4, γ = 1.75, and b) L = m = 4, γ = 2.875. The results
of comparison are presented in Table 2. From these results it can be observed that both
sixth-order lowpass differentiators designed using proposed method have much smaller
maximum passband and stopband magnitude response errors, δp and δs, compared to
existing differentiator of the same order from [18]. On the other hand, only lowpass
differentiator having maximum passband magnitude equal to γ = 2.875 has smaller
passband phase response error. In this example, both proposed differentiators require
one multiplication more than existing differentiator of the same order.

In the seventh example, the proposed lowpass differentiators are compared to
eighteenth-order (M = 9) lowpass differentiator from [18] with passband and stop-
band edge frequencies ωp = 0.7π and ωs = 0.825π. Three competing differentiators
are designed: a) L = m = 6, γ = 2.25, b) L = m = 7, γ = 2.75, and c) L = 10, m = 9,
γ = 2.75. The results of comparison are presented in Table 3. From these results it
can be concluded that eighteenth lowpass differentiator designed using the proposed
method outperforms existing differentiator from [18] of the same order in all terms
except the required number of multiplications. Compared to existing differentiator [18],
the proposed fourteenth-order differentiator has higher stopband magnitude response
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Table 2 ωp = 0.5π, ωs = 0.725π. Results of comparison of
proposed differentiators with lowpass differentiator from [18].

Parameters
Proposed

L = m = 4,
γ = 1.75

Proposed
L = m = 4
γ = 2.875

[18]

δp 1.31% 1.10% 3.79%
δs 8.44% 15.61% 36.3%
τ 2.73 2.37 2.45
η 7.22◦ 1.15◦ 1.21◦

no. of multiplications 4 4 3
no. of delays/filter order 6 6 6

error only, while the proposed twelfth-order differentiator has considerable higher
passband phase response linearity error and somewhat higher stopband magnitude
response error.

Table 3 ωp = 0.7π, ωs = 0.825π. Results of comparison of proposed differentiators
with lowpass differentiator from [18].

Parameters
Proposed

L = m = 6,
γ = 2.25

Proposed
L = m = 7,
γ = 2.75

Proposed
L = 10, m = 9,

γ = 2.75
[18]

δp 0.72% 0.40% 0.34% 0.84%
δs 15% 33.68% 5.06% 10.05%
τ 4.63 5.42 8.42 8.52
η 12.41◦ 3.48◦ 3.37◦ 4.61◦

no. of multiplications 6 7 10 9
no. of delays/filter order 12 14 18 18

The results presented in examples 5, 6 and 7 lead to the conclusion that proposed
differentiators compare favorably with existing allpass-based IIR lowpass differentia-
tors [18] of the same order. On the other hand, due to the fact that maximum of the
magnitude response of proposed lowpass differentiators equals γ, while higher values of
parameter γ are required to obtain nearly-linear phase, existing allpass-based lowpass
differentiators from [18] have lower maximum of the magnitude response.

4.2 Comparison with the nearly-linear phase lowpass
differentiators from [12]

Comparison of the proposed lowpass differentiators with differentiators from [12] is
presented in this subsection. These differentiators are designed by minimizing the
group-delay deviation subject to constraints on maximum relative passband magnitude
response error and average squared stopband magnitude response. Transfer function
of lowpass differentiators from [12] can be expressed as

H2 (z) =
(
1− z−1

) ∑M−1
i=0 qiz

−i

1 +
∑M

i=1 piz
−i
, (40)

15



thus requiring 2M multiplications and M delays.
In the eighth example, proposed differentiators are compared to third-order lowpass

differentiator from [12] with passband edge frequency ωp = 0.3π. Three differentiators
are designed: a) L = m = 3, ωs = 0.525π, γ = 1.25, b) L = m = 4, ωs = 0.45π,
γ = 1.125, and c) L = 5, m = 4, ωs = 0.44π, γ = 1.5. From the results presented in
Table 4, it can be concluded that all differentiators designed using the proposed method
outperform existing one in terms of δp, Psb, and required number of multiplications.
On the other hand, the proposed eighth-order differentiator has smaller phase response
error, while the fourth- and sixth-order differentiators have somewhat higher value of
passband phase response error compared to the existing differentiator from [12].

Table 4 ωp = 0.3π. Results of comparison of proposed differentiators with lowpass
differentiator from [12].

Parameters

Proposed
L = m = 3,
ωs = 0.525π,

γ = 1.25

Proposed
L = m = 4,
ωs = 0.45π,
γ = 1.125

Proposed
L = 5, m = 4,
ωs = 0.44π,

γ = 1.5

[12]

δp 3.05% 0.21% 0.86% 3.5%
Psb 0.24 0.23 0.24 0.25
τ 1.94 3.06 3.73 3.36
η 4.96◦ 4.10◦ 1.50◦ 1.71◦

no. of multiplications 3 4 5 6
no. of delays/filter order 4 6 8 3

In the ninth example, two differentiators having the same passband and stopband
edge frequencies, ωp = 0.5π, ωs = 0.63π, are designed using the proposed method with
following values: a) L = m = 4, γ = 2.3125, b) L = 6, m = 5, γ = 2.5. The results
of comparison are presented in Table 5. From these results it can be concluded that
tenth-order proposed lowpass differentiator outperform existing one in all terms except
filter order and average group delay values. On the other hand, proposed sixth-order
differentiator requires only four multiplications (compared to 6 multipliers required
by the other proposed and existing differentiator), has lower values of δp and Psb,
but somewhat higher passband phase error (2.77◦) compared to existing differentiator
(1.74◦).

In the tenth example, two tenth-order (L = m = 6) differentiators with passband
edge frequency ωp = 0.7π are designed using the proposed method: a) ωs = 0.85π,
γ = 2.25, and b) ωs = 0.815π, γ = 2.3125, and compared to the lowpass differentiator
from [12]. The results of comparison are summarized in Table 6, while magnitude
response, relative passband magnitude response and phase linearity errors are given
in Figure 8. Both proposed differentiators have higher group delay/filter order than
existing one, while the first proposed differentiator has slightly higher passband phase
error (12.2◦ compared to 11.96◦).

The results presented in examples 7, 8 and 9 lead to the conclusion that the pro-
posed allpass-based IIR lowpass differentiators, although of the higher order, require
less multiplications compared to the existing lowpass differentiators from [12].
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Table 5 ωp = 0.5π. Results of comparison of proposed
differentiators with lowpass differentiator from [12].

Parameters

Proposed
L = m = 4,
ωs = 0.63π,
γ = 2.3125

Proposed
L = 6, m = 5,
ωs = 0.63π,

γ = 2.5

[12]

δp 1.98% 1.4% 6%
Psb 0.87 0.76 0.88
τ 2.49 4.44 2.31
η 2.77◦ 1.7◦ 1.74◦

no. of multiplications 4 6 6
no. of delays/filter order 6 10 3

Table 6 ωp = 0.7π. Results of comparison of proposed
differentiators with lowpass differentiator from [12].

Parameters

Proposed
L = m = 6,
ωs = 0.85π,
γ = 2.25

Proposed
L = m = 6,
ωs = 0.815π,
γ = 2.3125

[12]

δp 0.61% 0.96% 1%
Psb 1.18 1.2 1.2
τ 4.63 4.58 2.02
η 12.2◦ 9.69◦ 11.96◦

no. of multiplications 6 6 8
no. of delays/filter order 10 10 4

4.3 Comparison with the nearly-linear phase lowpass
differentiators from [5]

In this subsection, a comparison of the proposed nearly-linear phase IIR lowpass differ-
entiators with the ones from [5] is presented. These differentiators are derived from the
lowpass differentiators designed using cascading approach (second-order wideband dif-
ferentiator [3] is cascaded with the third-order Chebyshev I lowpass filter with 0.1 dB
passband ripple value) by altering the denominator coefficients such that magnitude
and passband phase response linearity errors are simultaneously minimized. Transfer
function of lowpass differentiators from [5] can be expressed as

H3 (z) =
q0

(
1− z−2

) (
1 + z−1

)3

1 + p1z−1 + p2z−2 + p3z−3 + p4z−4 + p5z−5
, (41)

thus requiring 6 multiplications and 5 delays.
In Examples 10, 11 and 12, proposed lowpass differentiators are compared to fifth-

order differentiators from [5] with passband edge frequencies ωp = 0.3π, ωp = 0.4π
and ωp = 0.5π, respectively. The results of comparison are presented in Tables 7, 8
and 9. Magnitude responses, relative passband magnitude response errors and pass-
band phase response linearity errors for ωp = 0.4π are shown in Figure 9. From
these results it can be concluded that the proposed fourth-order allpass-based IIR
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Fig. 8 ωp = 0.7π. (A) Magnitude responses, (B) relative passband magnitude response errors, and
(C) passband phase response linearity errors of the IIR lowpass differentiator from [12] (solid line) and
the proposed ones (dashed and dotted lines correspond to two tenth-order (γ = 2.25 and γ = 2.1325)
differentiators, respectively).

lowpass differentiators have better or comparable performances than existing fifth-
order differentiators from [5], while proposed sixth-order differentiators outperform
fifth-order differentiators [5] in all terms except filter order and group delay values.
Furthermore, proposed fourth- and sixth-order differentiators require significantly less
multiplications compared to differentiators from [5].

Table 7 ωp = 0.3π. Results of comparison of proposed
differentiators with lowpass differentiator from [5].

Parameters

Proposed
L = m = 3,
ωs = 0.625π,
γ = 1.125

Proposed
L = m = 4
ωs = 0.55π,
γ = 1.0625

[5]

δp 2.04% 0.10% 2.56%
Psb 0.23 0.22 0.24
τ 2.09 3.16 2.34
η 6.05◦ 5.38◦ 6.27◦

no. of multiplications 3 4 6
no. of delays/filter order 4 6 5
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Table 8 ωp = 0.4π. Results of comparison of proposed
differentiators with lowpass differentiator from [5].

Parameters
Proposed

L = 3, m = 4,
γ = 1.2745

Proposed
L = m = 4
ωs = 0.6π,
γ = 1.375

[5]

δp 0.93% 0.39% 2.34%
Psb 0.41 0.36 0.41
τ 2.08 2.92 1.98
η 10.94◦ 6.9◦ 10.58◦

no. of multiplications 4 4 6
no. of delays/filter order 4 6 5

0 0.4 0.6 1
0

ωp
1.375

ω/π, rad

(A)
∣∣H

(
ejω

)∣∣

0 1
−2.4

−1.2

0

1.2
·10−2

ω/ωp

(B) ε (ω)

0 1
0

7

11

ω/ωp

(C) ζ (ω), deg

Fig. 9 ωp = 0.4π. (A) Magnitude responses, (B) relative passband magnitude response errors, and
(C) passband phase response linearity errors of the IIR lowpass differentiator from [5] (solid line)
and the proposed ones (dashed and dotted lines correspond to fourth- and sixth-order differentiators,
respectively).
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Table 9 ωp = 0.5π. Results of comparison of proposed
differentiators with lowpass differentiator from [5].

Parameters
Proposed

L = 3, m = 4,
γ = 1.584

Proposed
L = m = 4
ωs = 0.7π,
γ = 1.75

[5]

δp 1.04% 1.46% 6.70%
Psb 0.89 0.63 0.89
τ 1.88 2.73 1.66
η 11.54◦ 7.40◦ 11.77◦

no. of multiplications 4 4 6
no. of delays/filter order 4 6 5

5 Conclusion

The paper presents the design of nearly-linear phase allpass-based IIR lowpass dif-
ferentiators with the magnitude response approximating the ideal one in weighted
Chebyshev sense both in the passband and the stopband. Employed parallel connec-
tion of two allpass filters whose orders differ by two, where allpass branch of lower
order is a pure delay, allows formulation of the differentiator magnitude and phase
responses as functions of the corresponding allpass filter phase response and maxi-
mum of the magnitude response (i.e. the value of the parameter γ). Relation between
these two responses is such that the phase response linearity error can be effectively
controlled by the maximum of the magnitude response and the maximum of the rela-
tive passband magnitude response error. This, if very low phase linearity errors (below
few degrees) are required, leads to considerable magnitude response overshoot in the
transition region. Therefore, instead of increasing the maximum of the magnitude
response, phase correction of the proposed low-order lowpass differentiators may be a
better solution. This will be a matter of future research.

Design examples demonstrate that even fourth-order differentiators (requiring only
3 or 4 multiplications depending on whether γ can be expressed as the sum of a few
power-of-two terms or not) can have very low relative magnitude response errors and
nearly-linear phases. Furthermore, proposed differentiators compare favorably with
existing allpass-based IIR lowpass differentiators of the same order, while compared to
other existing IIR nearly-linear phase lowpass differentiators, proposed differentiators
require less multiplications.
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Appendix A Allpass-based IIR lowpass
differentiators design function

def designMethod(L, m, wp, ws, gamma):

import sympy as sp

import numpy as np

import scipy.signal as scs

def phi1(w): return int(w<=wp)*(-(L-2)*w - 2*sp.asin(w/gamma)) +\

int(w>=ws)*(-(L-2)*w - 2*sp.pi)

_a = sp.Matrix([1] + [sp.Symbol(’a%d’ % i, real=True)

for i in range(1, L+1)])

_w = sp.Symbol(’w’, real=True)

c = sp.Matrix([sp.cos(n*_w) for n in range(L+1)]).T

s = sp.Matrix([sp.sin(n*_w) for n in range(L+1)]).T

sc = sp.Matrix([(n-1)*sp.sinc(_w*(n-1)) for n in range(L+1)]).T

_lmbd = (sc*_a)[0] / sp.sqrt((c*_a)[0]**2 + (s*_a)[0]**2)

_grad_lmbd = [_lmbd.diff(_a[i]) for i in range(1, L+1)]

# Step 1

w = [(k+2)*wp/(m+2) for k in range(1, m)] + \

[ws + (k-m+1)*(np.pi-ws)/(L-m+2) for k in range(m, L+1)]

B = sp.Matrix([[sp.sin((phi1(w[k]) + (L - 2*i)*w[k]) / 2)

for i in range(1, L+1)] for k in range(L)])

c = sp.Matrix([-sp.sin((phi1(w[k]) + L*w[k]) / 2) for k in range(L)])

ap = np.array(list(B**-1 * c))

w = np.linspace(0, 1, 10001) * np.pi

wpass, wstop = w[w<=wp], w[w>=ws]

dtol = 1e-10

while True:

lmbd = _lmbd.subs([(_a[i], ap[i-1]) for i in range(1, L+1)])

lmbd = sp.lambdify(_w, lmbd)

grad_lmbd = [_grad_lmbd[k].subs(

[(_a[i], ap[i-1]) for i in range(1, L+1)]) for k in range(L)]

grad_lmbd = sp.lambdify(_w, grad_lmbd)

# Step 2
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def err_pass(w): return -1 - gamma*lmbd(w)

def err_stop(w): return -w*gamma*lmbd(w)

ind, _ = scs.find_peaks(abs(err_pass(wpass)))

w_hat = np.append(np.append(0, wpass[ind]), wp)

# extremas of the same sign

if len(w_hat)>m and \

np.sign(err_pass(w_hat[0]))==np.sign(err_pass(w_hat[1])):

w_hat = w_hat[1:]

if len(w_hat)>m and \

np.sign(err_pass(w_hat[-1]))==np.sign(err_pass(w_hat[-2])):

w_hat = w_hat[:-1]

# m+1 sign-alternating extrema

if len(w_hat) > m:

if wp >= np.pi/2:

w_hat = w_hat[:-1]

elif abs(err_pass(w_hat[0])) > abs(err_pass(w_hat[-1])):

w_hat = w_hat[:-1]

else:

w_hat = w_hat[1:]

p = int(np.sign(err_pass(w_hat[0])) == 1)

ind, _ = scs.find_peaks(abs(err_stop(wstop)))

w_ol = np.append(ws, wstop[ind])

if len(w_ol) > (L-m+2):

if abs(err_stop(ws)) > abs(err_stop(ws[-1])):

w_ol = w_ol[:-1]

else:

w_ol = w_ol[1:]

# Step 3

Lhs = [[sp.Matrix([grad_lmbd(w_hat[k]) for k in range(m)]),

sp.Matrix([(-1)**(p+k) for k in range(1, m+1)]),

sp.zeros(m, 1)],

[sp.Matrix([grad_lmbd(w_ol[k]) for k in range(L-m+2)]),

sp.zeros(L-m+2, 1),

sp.Matrix([(-1)**(k+1) / w_ol[k] for k in range(L-m+2)])]]

Lhs = sp.Matrix(Lhs)

rhs = sp.Matrix(-np.append(1/gamma + lmbd(w_hat), lmbd(w_ol)))

x = Lhs**-1 * rhs

a = ap + np.array(x[:L])

if abs(np.array(x[:L])).max() <= dtol:

break

else:

ap = a

return a
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