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ABSTRACT
A new approach to the design of the nearly-linear phase infinite impulse response
low-pass differentiators using a parallel all-pass structure is discussed in this paper.
The magnitude and phase responses of the proposed low-pass differentiators are first
formulated as functions of the phase responses of the corresponding all-pass filters,
and a set of equations is derived such that the magnitude response approximates the
ideal one in the weighted Chebyshev sense both in the passband and the stopband.
The maximum passband phase response linearity error is shown to be related to
the maximum passband magnitude error and the value of an additional design pa-
rameter. Comparison with the existing nearly-linear phase infinite impulse response
low-pass differentiators shows that the low-pass differentiators designed using the
proposed method usually require less multiplications, which comes at the cost of
a somewhat higher filter order and consequently higher group delay. However, as
the reduced number of multiplications lead to lower power consumption if hardware
implementation is considered, the proposed low-pass differentiators are an attractive
alternative in applications where low group delay is not of crucial importance.

KEYWORDS
All-pass digital filter; parallel connection; weighted Chebyshev approximation;
low-pass differentiators; nearly-linear phase response

1. Introduction

Low-pass differentiators, needed in various applications (Ferdi, 2010; Laguna, Thakor,
Caminal & Jane, 1990; Luo, Bai, He & Ying, 2004; Platas-Garza, Platas-Garza &
de la O Serna, 2009; Skolnik, 1980; Väliviita & Ovaska, 1998; Wulf, Staude, Knopp
& Felderhoff, 2016) where the time derivative of the input signal at low frequencies is
of interest, while high frequency noise needs to be suppressed, can be designed either
as a finite impulse response (Ferdi, 2010; Khan, Okuda & Ohba, 2005; Kumar & Roy,
1988; de la O Serna & Platas-Garza, 2011; Selesnick, 2002; Wang, 2013; Wulf et al.,
2016) or an infinite impulse response (IIR) filters (Al-Alaoui, 1995, 2007; Le Bihan,
1993; Nakamoto & Ohno, 2014; Nongpiur, Shpak & Antoniou, 2014; Skogstad, Holm &
Høvin, 2012; Stančić, Krstić & Živković, 2019; Yoshida, Nakamoto & Aikawa, 2018).
While a perfectly linear passband phase response of an IIR low-pass differentiator

CONTACT Ivan Krstić. Email: ivan.krstic@pr.ac.rs



cannot be achieved, the order of a IIR low-pass differentiator is significantly lower
compared to its finite impulse response counterpart. Furthermore, in most applications
the fact that the passband phase response is not perfectly linear is not an issue if it is
a nearly-linear function of frequency.

There are several approaches to IIR low-pass differentiators design. The conventional
approach is based on the cascade connection of the fullband differentiator and the
appropriate low-pass filter (Skogstad et al., 2012; Stančić et al., 2019). On the other
hand, IIR low-pass differentiators in (Al-Alaoui, 1995; Le Bihan, 1993) are designed by
inverting the transfer function of the IIR low-pass integrators, followed by reflection
of the unstable poles inside the unit circle. The methods of the third approach (Al-
Alaoui, 2007; Nakamoto & Ohno, 2014; Nongpiur et al., 2014; Skogstad et al., 2012;
Yoshida et al., 2018) formulate the IIR low-pass differentiator design problem as a
constrained optimization problem. In (Al-Alaoui, 2007; Skogstad et al., 2012), the
numerator of the IIR low-pass differentiator is assumed to be the linear-phase filter
while the denominator coefficients are obtained using the classical (Al-Alaoui, 2007)
and metaheuristic (Skogstad et al., 2012) constrained optimization methods. Another
constrained optimization IIR low-pass differentiator design method that minimises the
group-delay deviation of the IIR low-pass differentiator with respect to the average
group delay under the constraints that the maximum relative passband magnitude
response error and maximum average squared stopband magnitude response are below
the prescribed values is proposed in (Nongpiur et al., 2014), while the design method
presented in (Nakamoto & Ohno, 2014; Yoshida et al., 2018) formulates the IIR low-
pass differentiator design problem in quadratic form without frequency sampling, such
that magnitude and phase response specifications are simultaneously approximated.

In a recently published paper (Stančić et al., 2019), the authors reported an all-
pass-based design of IIR fullband differentiators. In the paper, this concept is extended
towards the design of nearly-linear phase IIR low-pass differentiators whose magnitude
response approximates the ideal one in the weighted Chebyshev sense. The novelty of
the paper is the introduction of a new structure for the IIR low-pass differentiators
design composed of two parallel all-pass filters of the same orders, where one of the
all-pass branches is a pure delay. Furthermore, the maximum passband phase response
linearity error of the proposed low-pass differentiators is shown to be related to the
maximum passband magnitude error and the value of an additional design parameter;
therefore it can be effectively controlled. To the best of our knowledge, the design of
IIR low-pass differentiators using a parallel all-pass structure has not been considered
in the existing literature.

The rest of the paper is structured as follows. The problem formulation of the all-
pass-based nearly-linear phase IIR low-pass differentiator with magnitude response
approximating the ideal one in the weighted Chebyshev sense is given in Sec. 2. The
proposed IIR low-pass differentiator design method is presented in Sec. 3, while con-
siderations regarding the relative passband magnitude error minimization are given
in Sec. 4. Design examples along with a comparison with the existing nearly-linear
phase IIR low-pass differentiators are discussed in Sec. 5, while concluding remarks
are drawn in Sec. 6.
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Figure 1. Low-pass differentiator realised using parallel all-pass structure.

2. Problem formulation

The transfer function of IIR low-pass differentiators, whose design is considered in this
paper, is assumed to take the following form

H (z) =
γ

2

[
AL (z)− z−L

]
, (1)

as shown in Figure 1, where AL (z) is the transfer function of the Lth order stable
all-pass transfer function with single poles

AL (z) = z−L
1 +

∑L
i=1 aiz

i

1 +
∑L

i=1 aiz
−i . (2)

The magnitude and phase responses of the proposed low-pass differentiator can
easily be formulated as functions of the phase response of the all-pass filter AL (z),
denoted by φ (ω), by substituting z = ejω in (1), followed by some mathematical
manipulations

∣∣H (ejω)∣∣ = γ

∣∣∣∣sin φ (ω) + Lω

2

∣∣∣∣ , (3a)

ϕ (ω) = arg
{
H
(
ejω
)}

=
φ (ω)− Lω + π

2
, (3b)

while φ (ω) can be determined from (2) as

φ (ω) = −Lω + 2 arctan

∑L
i=1 ai sin (iω)

1 +
∑L

i=1 ai cos (iω)
. (4)

As the phase response φ (ω) of the stable real Lth order all-pass filter transfer function,
AL (z), satisfies φ (0) = 0 and φ (π) = −Lπ, from (3a) it follows that

∣∣H (ej0)∣∣ = 0

and
∣∣H (ejπ)∣∣ = 0.

The frequency response of an ideal low-pass differentiator having a nonzero transi-
tion region width takes the following form

Hid

(
ejω
)

=

{
jωe−jωτ , ω ≤ ωp

0, ω ≥ ωs
, (5)
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where ωp and ωs > ωp are passband and stopband edge frequencies, respectively, while
τ is the passband group delay. The magnitude response of the proposed IIR low-pass
differentiators, (3a), approximates the ideal one which from (5) can be derived as

∣∣Hid

(
ejω
)∣∣ =

{
ω, ω ≤ ωp
0, ω ≥ ωs

, (6)

if φ (ω) approximates either

φ′ (ω) =

{
−Lω + 2 arcsin ω

γ , ω ≤ ωp
−Lω, ω ≥ ωs

, (7)

or

φ′′ (ω) =

{
−Lω − 2 arcsin ω

γ , ω ≤ ωp
−Lω, ω ≥ ωs

. (8)

However, for a narrow transition region, φ′′ (ωp) is less than φ′′ (ωs), which cannot be
achieved by the stable all-pass filter AL (z), since its phase response is a monotonically
decreasing function of frequency. To circumvent this situation, it will be assumed that
the all-pass filter phase response φ (ω) approximates φ′ (ω). To ensure the monotoni-
cally decreasing behavior of φ′ (ω), the following should be satisfied

dφ′ (ω)

dω
< 0, (9)

which is equivalent to

γ > ωp

√
1 +

(
2

Lωp

)2

. (10)

Since the phase response approximation error function of the all-pass filter AL (z)
equals

ζφ (ω) = φ (ω)− φ′ (ω) =

{
φ (ω) + Lω − 2 arcsin ω

γ , ω ≤ ωp
φ (ω) + Lω, ω ≥ ωs

, (11)

the magnitude response of the proposed IIR low-pass differentiator, given by (3a), in
the passband and the stopband can be formulated as

∣∣H (ejω)∣∣ =

 γ
∣∣∣sin(arcsin ω

γ + ζφ(ω)
2

)∣∣∣ , ω ≤ ωp
γ
∣∣∣ sin ζφ(ω)

2

∣∣∣ , ω ≥ ωs
. (12)

Adopting the assumption that the phase response approximation error of the all-pass
filter AL (z) satisfies the inequality

ζφ (ω) > −2 arcsin
ω

γ
, 0 < ω ≤ ωp, (13)
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(12), and consequently (3a) can be rewritten as

∣∣H (ejω)∣∣ =

{
γ sin φ(ω)+Lω

2 , ω ≤ ωp
γ
∣∣∣sin φ(ω)+Lω

2

∣∣∣ , ω ≥ ωs
. (14)

Based on the previous discussion it can be concluded that the proposed IIR low-
pass differentiator exhibits a magnitude response approximating the ideal one in the
weighted Chebyshev sense both in the passband and the stopband if the magnitude
response error function

ξ (ω) = W (ω)
(∣∣H (ejω)∣∣− ∣∣Hid

(
ejω
)∣∣), (15)

satisfies

ξ (ω̃k) = W (ω̃k)

[
γ sin

φ (ω̃k) + Lω̃k
2

− ω̃k
]

= (−1)k+m δp, (16)

for k = 1, 2, . . . , m, and

(−1)k ξ (ω̂k) = γW (ω̂k) sin
φ (ω̂k) + Lω̂k

2
= (−1)k δs, (17)

for k = 1, 2, . . . , L−m, while at the passband and the stopband edge frequencies

ξ (ωp) = W (ωp)

[
γ sin

φ (ωp) + Lωp
2

− ωp
]

= −δp, (18a)

ξ (ωs) = γW (ωs) sin
φ (ωs) + Lωs

2
= δs, (18b)

where δp and δs are passband and stopband weighted Chebyshev norms, respectively,

δp = max
ω≤ωp

∣∣ξ (ω)
∣∣, (19a)

δs = max
ω≥ωs

ξ (ω) , (19b)

W (ω) is the positive weighting function, m is the number of sign-alternating extremal
values in the passband, while the frequencies where extremal values occur are 0 ≤
ω̃1 < ω̃2 < · · · < ω̃m < ωp and ωs < ω̂1 < ω̂2 < · · · < ω̂L−m < π. The graphical
interpretation of the IIR low-pass differentiator’s magnitude response approximating
the ideal one in the weighted Chebyshev sense is shown in Figure 2.

Regarding the passband phase response of the proposed low-pass differentiators,
substitution of (11) in (3b) yields

ϕ (ω) =
π

2
− Lω + arcsin

ω

γ
+
ζφ (ω)

2
, ω ≤ ωp, (20)
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Figure 2. Graphical interpretation of the IIR low-pass differentiator’s magnitude response approximating the
ideal one in the weighted Chebyshev sense both in the passband and the stopband, for L = 6, m = 3.

which for γ � ωp reduces to

ϕ (ω) ≈ π

2
− ω

(
L− γ−1

)
+
ζφ (ω)

2
, ω ≤ ωp. (21)

Obviously, the passband phase response of the proposed IIR low-pass differentiators
is a nearly-linear function of frequency for a small all-pass filter’s AL (z) passband
phase response approximation error and γ sufficiently greater than the passband edge
frequency ωp.

2.1. Passband phase response linearity error of the proposed low-pass
differentiators

Denoting the average passband group delay of the low-pass differentiator by

τ =
1

ωp

∫ ωp

0
τ (ω) dω =

ϕ (0)− ϕ (ωp)

ωp
, (22)

the passband phase response linearity error defined as (Nongpiur et al., 2014):

ζϕ (ω) = ϕ (ω)−
(π

2
− ωτ

)
, (23)

in case of the proposed low-pass differentiators, that is, by employing (3b) and (18a),
can be formulated in terms of the phase response φ (ω) of the corresponding all-pass
filter AL (z), the passband weighted Chebyshev norm δp and the value of the parameter
γ as

ζϕ (ω) =
φ (ω) + Lω

2
− ω

ωp
arcsin

[
γ−1

(
ωp −

δp
W (ωp)

)]
. (24)
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Since from (19a) it follows that

arcsin

[
γ−1

(
ω − δp

W (ω)

)]
≤ φ (ω) + Lω

2
≤ arcsin

[
γ−1

(
ω +

δp
W (ω)

)]
, (25)

for ω ≤ ωp, it can be concluded that the passband phase response linearity error of
the proposed low-pass differentiators satisfies

L (ω) ≤ ζϕ (ω) ≤ U (ω) , (26)

where the lower and upper margin functions of the passband phase response linearity
error are equal to

L (ω) = arcsin

[
γ−1

(
ω − δp

W (ω)

)]
− ω

ωp
arcsin

[
γ−1

(
ωp −

δp
W (ωp)

)]
, (27a)

U (ω) = arcsin

[
γ−1

(
ω +

δp
W (ω)

)]
− ω

ωp
arcsin

[
γ−1

(
ωp −

δp
W (ωp)

)]
. (27b)

3. Design method

In this section, an iterative procedure for determination of the unknown all-pass filter
coefficient vector

a = [a1, a2, . . . , aL]T , (28)

such that the obtained magnitude response of the IIR low-pass differentiator approx-
imates the ideal one in the weighted Chebyshev sense both in the passband and the
stopband is discussed. Determination of the initial solution for the coefficient vector
a(0), such that ξ

(
ω, a(0)

)
exhibits L extremal values, is discussed first.

3.1. Determination of the initial solution for the coefficient vector

Since the initial solution for the all-pass filter AL (z) coefficient vector a(0) should
be determined such that the magnitude response error function ξ

(
ω, a(0)

)
exhibit

m and L − m extremal values in the passband and the stopband, respectively, it is
determined by setting the all-pass filter’s AL (z) phase response approximation error
function ζφ

(
ω, a(0)

)
to zero value at L distinct frequency points:

ω′k = k
ωp

m+ 1
, k = 1, 2, . . . , m, (29a)

ω′′k = ωs + k
π− ωs

L−m+ 1
, k = 1, 2, . . . , L−m, (29b)
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which is equivalent to

φ
(
ω′k, a

(0)
)

= φ′
(
ω′k
)

= −Lω′k + 2 arcsin
ω′k
γ
, k = 1, 2, . . . , m, (30a)

φ
(
ω′′k , a

(0)
)

= φ′
(
ω′′k
)

= −Lω′′k , k = 1, 2, . . . , L−m. (30b)

Since phase response φ (ω) of the all-pass filter AL (z) is related to its coefficients
as

L∑
i=1

ai sin
φ (ω) + (L− 2i)ω

2
= − sin

φ (ω) + Lω

2
, (31)

note (4), (30) can be rewritten in matrix notation as

Υa(0) = η, (32)

where Υ = [υki] is the L×L square matrix, while η = [ηk] is the L× 1 column vector
such that

υki =

{
sin
(
iω′k − arcsin ω′k

γ

)
, 1 ≤ k ≤ m

sin
(
iω′′k−m

)
, m+ 1 ≤ k ≤ L

, (33a)

ηk =

{
γ−1ω′k, 1 ≤ k ≤ m

0, m+ 1 ≤ k ≤ L . (33b)

Therefore, the solution for a(0) can be determined as

a(0) = Υ−1η. (34)

All-pass filter phase response error functions ζφ
(
ω, a(0)

)
and the corresponding

magnitude response error functions ξ
(
ω, a(0)

)
for L = 4, 6, W (ω) = 1, γ = 4, m =

b(L+ 1) /2c, ωp = 0.4π and ωs = 0.6π are shown in Figure 3.

3.2. Proposed algorithm

In every iteration t ≥ 1 of the algorithm, the coefficient vector a(t) and the values

of the parameters δ
(t)
p and δ

(t)
s are obtained by means of the previously determined

vector a(t−1). The aforementioned is performed by solving approximately the following
system of L+ 2 equations in L+ 2 unknowns (note (16), (17) and (18)):

sin
φ
(
ω̃

(t−1)
k , a(t)

)
+ Lω̃

(t−1)
k

2
=
ω̃

(t−1)
k

γ
+

(−1)k+m δ
(t)
p

γW
(
ω̃

(t−1)
k

) , k = 1, 2, . . . , m, (35a)
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Figure 3. The magnitude response error function ξ
(
ω, a(0)

)
of the low-pass differentiator H (z), and the

corresponding phase response error function ζφ
(
ω, a(0)

)
of the all-pass filter AL (z), for L = 4, 6, W (ω) = 1,

γ = 4, m = b(L+ 1) /2c, ωp = 0.4π, ωs = 0.6π.

sin
φ
(
ω̂

(t−1)
k , a(t)

)
+ Lω̂

(t−1)
k

2
=

(−1)k δ
(t)
s

γW
(
ω̂

(t−1)
k

) , k = 1, 2, . . . , L−m, (35b)

sin
φ
(
ωp, a

(t)
)

+ Lωp

2
=
ωp
γ
− δ

(t)
p

γW (ωp)
, (35c)

sin
φ
(
ωs, a

(t)
)

+ Lωs

2
=

δ
(t)
s

γW (ωs)
, (35d)

where ω̃
(t−1)
k and ω̂

(t−1)
k are frequency positions of the kth extremal point of the mag-

nitude error function ξ
(
ω, a(t−1)

)
in the passband and the stopband, respectively.

Namely, since the left-hand sides of the previous equations are nonlinear in the un-
known coefficient vector a(t) = a(t−1) + ∆a(t), they are replaced by their first order
Taylor expansions which take the following form

sin
φ
(
ω, a(t)

)
+ Lω

2
= sin

φ
(
ω, a(t−1)

)
+ Lω

2
+

L∑
i=1

∆a
(t)
i ·

∂

∂ai
sin

φ
(
ω, a(t−1)

)
+ Lω

2
,

(36)
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where partial derivatives can be determined using (4) as

∂

∂ai
sin

φ
(
ω, a(t−1)

)
+ Lω

2
= cos

φ
(
ω, a(t−1)

)
+ Lω

2

·
sin (iω) +

∑L
n=1 a

(t−1)
n sin (ω (i− n))(

1 +
∑L

n=1 a
(t−1)
n cos (nω)

)2
+
(∑L

n=1 a
(t−1)
n sin (nω)

)2 .

(37)
In this way, linearised forms of (35) can be rewritten in matrix notation as

Ψ(t−1) ·

 ∆a(t)

δ
(t)
p

δ
(t)
s

 = λ(t−1), (38)

where Ψ(t−1) =
[
ψ

(t−1)
ki

]
and λ(t−1) =

[
λ

(t−1)
k

]
are the (L+ 2)×(L+ 2) square matrix

and (L+ 2)× 1 column vector, respectively, with elements

ψ
(t−1)
ki =



γ ∂
∂ai

sin
φ(ω̃(t−1)

k ,a(t−1))+Lω̃
(t−1)
k

2 , 1 ≤ i ≤ L, 1 ≤ k ≤ m

γ ∂
∂ai

sin
φ(ω̂(t−1)

k−m ,a(t−1))+Lω̂
(t−1)
k−m

2 , 1 ≤ i ≤ L, m+ 1 ≤ k ≤ L

γ ∂
∂ai

sin
φ(ωp,a(t−1))+Lωp

2 , 1 ≤ i ≤ L, k = L+ 1

γ ∂
∂ai

sin
φ(ωs,a(t−1))+Lωs

2 , 1 ≤ i ≤ L, k = L+ 2

(−1)k+m+1W−1
(
ω̃

(t−1)
k

)
, i = L+ 1, 1 ≤ k ≤ m

(−1)k−m+1W−1
(
ω̂

(t−1)
k−m

)
, i = L+ 2, m+ 1 ≤ k ≤ L

W−1 (ωp), i = L+ 1, k = L+ 1
−W−1 (ωs), i = L+ 2, k = L+ 2

0, i = L+ 1, m+ 1 ≤ k ≤ L
0, i = L+ 2, 1 ≤ k ≤ m
0, i = L+ 1, k = L+ 2
0, i = L+ 2, k = L+ 1

, (39a)

λ
(t−1)
k =


ω̃

(t−1)
k − γ sin

φ(ω̃(t−1)
k ,a(t−1))+Lω̃

(t−1)
k

2 , 1 ≤ k ≤ m
−γ sin

φ(ω̂(t−1)
k−m ,a(t−1))+Lω̂

(t−1)
k−m

2 , m+ 1 ≤ k ≤ L
ωp − γ sin

φ(ωp,a(t−1))+Lωp
2 , k = L+ 1

−γ sin
φ(ωs,a(t−1))+Lωs

2 , k = L+ 2

. (39b)

Based on the above discussion, an approximate solution for a(t) can be obtained by
solving the system of linear equations given by (38). On the other hand, the obtained
solution does not guarantee that extremal values of the proposed recursive low-pass

differentiator’s magnitude response error function occur at frequencies ω̃
(t−1)
k , for 1 ≤

k ≤ m, and ω̂
(t−1)
k , for 1 ≤ k ≤ L − m. Hence, an exchange algorithm for the IIR

low-pass differentiator design is proposed:
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(1) Set t = 0, δ
(0)
p = 0, δ

(0)
s = 0. Determine a(0) using (34).

(2) Update current iteration, i.e. t = t+ 1.
(3) Based on the known coefficient vector a(t−1) determine the set of frequencies

ω̃
(t−1)
k , 1 ≤ k ≤ m, and ω̂

(t−1)
k , 1 ≤ k ≤ L − m, where extremal values of

ξ
(
ω, a(t−1)

)
, defined by (15), occur.

(4) Calculate Ψ(t−1) and λ(t−1) using (39).

(5) Determine ∆a(t), δ
(t)
p and δ

(t)
s using (38) as ∆a(t)

δ
(t)
p

δ
(t)
s

 =
(
Ψ(t−1)

)−1
· λ(t−1).

(6) Update coefficient vector, a(t) = a(t−1) + ∆a(t).

(7) If max
{∣∣∆a(t)

∣∣ , ∣∣∣δ(t)
p − δ(t−1)

p

∣∣∣ , ∣∣∣δ(t)
s − δ(t−1)

s

∣∣∣} ≤ ∆tol, where ∆tol > 0 is the

prescribed tolerance, jump to the next step, otherwise proceed from step (2).
(8) The end of the algorithm. The unknown coefficient vector a equals a(t), while

the weighted Chebyshev norms equals δ
(t)
p and δ

(t)
s .

4. Considerations regarding the relative passband magnitude error
minimization

In most applications it is usually required that the relative passband magnitude error
of the low-pass differentiator is minimised, which means that the weighting function
in the passband equals

W (ω) =
1

ω
, ω ≤ ωp. (40)

In this case, the magnitude response error function given by (15) becomes indetermi-
nate for ω = 0. To circumvent this situation, (4), (14) and (40) are substituted in (15)
which after employing trigonometric identity

sin

(
arctan

x

y

)
=

x√
x2 + y2

,

yields the following formulation of the passband magnitude error function:

ξ (ω) = −1 +
γ
∑L

n=1 nansinc (nω)√(
1 +

∑L
n=1 an cos (nω)

)2
+
(∑L

n=1 an sin (nω)
)2
, ω ≤ ωp, (41)

where

sinc (x) =

{
sinx/x, x 6= 0

1, x = 0
. (42)

11



Regarding the lower and upper margin functions of the phase response linearity error,
substitution of (40) in (27) yields

L (ω, γ, δp) = arcsin
[
γ−1ω (1− δp)

]
− ω

ωp
arcsin

[
γ−1ωp (1− δp)

]
, (43a)

U (ω, γ, δp) = arcsin
[
γ−1ω (1 + δp)

]
− ω

ωp
arcsin

[
γ−1ωp (1− δp)

]
. (43b)

From the previous equations one has

∂

∂γ
L (ω, γ, δp) ≥ 0, (44a)

∂

∂γ
U (ω, γ, δp) ≤ 0, (44b)

which suggests that the passband phase response linearity error decreases with the
increase of the parameter γ, assuming the unchanged passband weighted Cheby-
shev norm δp. In a limiting case, that is, when γ−1ωp (1 + δp) and consequently
γ−1ωp (1− δp) are small (which is equivalent to γ � ωp), the lower and upper margin
functions of the passband phase response linearity error reduce to

L (ω, γ, δp)
∣∣
γ�ωp = 0, (45a)

U (ω, γ, δp)
∣∣
γ�ωp = 2γ−1ωδp ≈ 0, (45b)

i.e., the passband phase response of the proposed IIR low-pass differentiator is a linear
function of frequency regardless the maximum relative passband magnitude error δp.

Furthermore, since from (43) it follows that

∂

∂δp
L (ω, γ, δp) ≥ 0, (46a)

∂

∂δp
U (ω, γ, δp) ≥ 0, (46b)

if the maximum absolute passband phase response linearity error is required to be
below some prescribed value ζϕ, while the maximum relative passband magnitude

error δp is below some δp, the minimum value of the parameter γ, denoted by γ′, can
be estimated by solving the following minimization problem

minimise γ′

subject to: γ′ ≥ ωp
(
1 + δp

)
max

{
− min
ω≤ωp

L (ω, γ′, 0) , max
ω≤ωp

U
(
ω, γ′, δp

)}
= ζϕ

. (47)
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Figure 4. γ′ω−1
p as a function of δp and ζϕ for 10−2 ≤ δp ≤ 10−1 and 10−2 ≤ ζϕ ≤ 10.

Having in mind (44), it can be concluded that the derived optimization problem can
be efficiently solved, for example, by using a bisection method. Note that from (43)
it follows that the product γ′ω−1

p depends only on δp and ζϕ. γ′ω−1
p = f

(
δp, ζϕ

)
for

10−2 ≤ δp ≤ 10−1 and 10−2 ≤ ζϕ ≤ 10 is shown in Figure 4. It can be observed that

when ζϕ increases and/or δp decreases, γ′ω−1
p and consequently γ′ decreases.

5. Comparison with the existing IIR low-pass differentiators

In this section, the proposed IIR low-pass differentiators are compared to nearly-linear
phase IIR low-pass differentiators from (Al-Alaoui, 2007; Nongpiur et al., 2014). The
transfer function of the IIR low-pass differentiators from (Nongpiur et al., 2014) can
be expressed as

H1 (z) =
(
1− z−1

) ∑N−1
i=0 piz

−i

1 +
∑N

i=1 qiz
−i , (48)

therefore requiring at least N delays and 2N multiplications for realization. On the
other hand, the transfer function of the optimised low-pass differentiators from (Al-
Alaoui, 2007) takes the following form

H2 (z) =
q0

(
1− z−2

) (
1 + z−1

)3
1 + p1z−1 + p2z−2 + p3z−3 + p4z−4 + p5z−5

, (49)

requiring at least 5 delays and 6 multiplications for realization.
As a means of comparison, the maximum relative passband magnitude response

error, the average passband group delay, the required number of multiplications and
delays, the maximum passband phase response linearity error and average squared

13



stopband magnitude response defined as in (Nongpiur et al., 2014):

Psb =
1

π− ωp

∫ π

ωp

∣∣H (ejω)∣∣2 dω, (50)

since the methods presented in (Al-Alaoui, 2007; Nongpiur et al., 2014) do not con-
sider the stopband edge frequency, are used. Note that the transfer function (1) of
the proposed IIR low-pass differentiators can be realised using 2L delays and L + 1
multiplications. However, if γ is adopted to equal the sum of a few power-of-two terms,
the required number of multiplications reduces to L.

In all the examples the passband weighting function required by the proposed design
method is given by (40), while in the stopband it equals

W (ω) = 1, ω ≥ ωs. (51)

The weighted Chebyshev norms, δp and δs, obtained by utilization of the proposed
design method, for some L, ωp and W (ω) defined by (40) and (51), depend on γ, m
and ωs. Based on many runs of the proposed design method, the following is observed:

– for the constant L, m and ωs: when γ increases, δp increases while δs decreases;
– for the constant L, γ and ωs: when m decreases, δp increases while δs decreases;
– for the constant L, γ and m: when ωs decreases, both δp and δs increase.

The mentioned observations, along with the conclusions derived in Sec. 4, are fully
exploited to set the values of L, m, ωs and γ, required by the proposed design method,
such that the orders of the obtained IIR low-pass differentiators are as low as possible,
while the average squared stopband magnitude response defined by (50), the maxi-
mum absolute passband phase response linearity and the maximum relative passband
magnitude errors are lower than or comparable to those of the existing IIR low-pass
differentiators. Additionally, in all the following examples the value of the parameter
γ is adopted to equals the sum of a few power-of-two terms; therefore, the required
number of multiplications equals the order of the all-pass filter AL (z). ∆tol in all the
examples equals 10−10.

The results of comparison of the proposed IIR low-pass differentiators with those
from (Al-Alaoui, 2007; Nongpiur et al., 2014) which have passband edge frequencies
equal to 0.29π, 0.3π, 0.4π, 0.5π and 0.7π, along with the adopted values of L, m, γ
and ωs required by the proposed design method, are summarised in Tables 1, 2, 3, 4
and 5, respectively. Corresponding magnitude responses, relative passband magnitude
responses and passband phase linearity errors of the existing and proposed IIR low-
pass differentiators are given in Figures 5, 6, 7, 8 and 9.

From Tables 1, 2, 3, 4 and 5 it can be observed that the proposed IIR low-pass
differentiators for all the considered passband edge frequencies except 0.7π require
less multiplications compared to the existing low-pass differentiators from (Al-Alaoui,
2007; Nongpiur et al., 2014). This reduction in the required number of multiplica-
tions is significant in cases when passband edge frequencies equal 0.29π, 0.3π and
especially 0.5π, where the required number of multiplications equals half the num-
ber required by the existing low-pass differentiators. Furthermore, the proposed IIR
low-pass differentiators exhibit considerably lower passband phase response linearity
errors compared to the existing differentiators from (Al-Alaoui, 2007; Nongpiur et al.,
2014) for all passband edge frequencies except 0.5π, note Figures 5C, 6C, 7C, 8C and
9C and Tables 1, 2, 3, 4 and 5. The average squared stopband magnitude response of
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Table 1. ωp = 0.29π. Comparison between the proposed IIR low-pass differen-

tiator and the existing one from (Nongpiur et al., 2014).

Parameters
Proposed

L = 6, m = 3,
γ = 4, ωs = 0.45π

Method in
(Nongpiur et al., 2014)

Filter order 12 4
δp 0.012 0.015
Psb 0.17 0.16
τ 5.75 3.70

max
ω≤ωp

|ζϕ (ω)| in degrees 0.24 1.45

no. of multiplications 6 8
no. of delays 12 4
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Figure 5. ωp = 0.29π. (A) Magnitude responses, (B) relative passband magnitude response errors and (C)

passband phase response linearity errors of the IIR low-pass differentiator from (Nongpiur et al., 2014) (dash
dot lines) and the proposed one (solid lines).

Table 2. ωp = 0.3π. Comparison between the proposed IIR low-pass differentiator and the existing ones

from (Al-Alaoui, 2007; Nongpiur et al., 2014).

Parameters
Proposed

L = 4, m = 2,
γ = 2.5, ωs = 0.57π

Method in
(Nongpiur et al., 2014)

Method in
(Al-Alaoui, 2007)

Filter order 8 3 5
δp 0.024 0.035 0.026
Psb 0.24 0.23 0.24
τ 3.6 3.36 2.34

max
ω≤ωp

|ζϕ (ω)| in degrees 0.62 1.08 6.27

no. of multiplications 4 6 6
no. of delays 8 3 5
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Figure 6. ωp = 0.3π. (A) Magnitude responses, (B) relative passband magnitude response errors and (C)

passband phase response linearity errors of the IIR low-pass differentiator from (Nongpiur et al., 2014) (dash

dot line), (Al-Alaoui, 2007) (dashed lines) and the proposed one (solid lines).

Table 3. ωp = 0.4π. Comparison between the proposed IIR low-pass dif-
ferentiator and the existing one from (Al-Alaoui, 2007).

Parameters
Proposed

L = 5, m = 3,
γ = 2.5, ωs = 0.6π

Method in
(Al-Alaoui, 2007)

Filter order 10 5
δp 0.01 0.02
Psb 0.39 0.41
τ 4.59 1.98

max
ω≤ωp

|ζϕ (ω)| in degrees 0.5 10.58

no. of multiplications 5 6
no. of delays 10 5

Table 4. ωp = 0.5π. Comparison between the proposed IIR low-pass differentiator and the existing ones

from (Al-Alaoui, 2007; Nongpiur et al., 2014).

Parameters
Proposed

L = 3, m = 2, γ = 2,
ωs = 0.725π

Method in
(Nongpiur et al., 2014)

Method in
(Al-Alaoui, 2007)

Filter order 6 3 5
δp 0.04 0.06 0.07
Psb 0.83 0.88 0.89
τ 2.45 2.31 1.66

max
ω≤ωp

|ζϕ (ω)| in degrees 1.21 1.06 11.77

no. of multiplications 3 6 6
no. of delays 6 3 5
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Figure 7. ωp = 0.4π. (A) Magnitude responses, (B) relative passband magnitude response errors and (C)

passband phase response linearity errors of the IIR low-pass differentiator from (Al-Alaoui, 2007) (dashed lines)
and the proposed one (solid lines).

Table 5. ωp = 0.7π. Comparison between the proposed IIR low-pass differentiator
and the existing one from (Nongpiur et al., 2014).

Parameters
Proposed

L = 9, m = 7,
γ = 2.5, ωs = 0.825π

Method in
(Nongpiur et al., 2014)

Filter order 18 4
δp 0.008 0.01
Psb 1.14 1.2
τ 8.52 2.02

max
ω≤ωp

|ζϕ (ω)| in degrees 4.61 11.74

no. of multiplications 9 8
no. of delays 18 4
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Figure 8. ωp = 0.5π. (A) Magnitude responses, (B) relative passband magnitude response errors and (C)

passband phase response linearity errors of the IIR low-pass differentiator from (Nongpiur et al., 2014) (dash
dot line), (Al-Alaoui, 2007) (dashed lines) and the proposed one (solid lines).
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Figure 9. ωp = 0.7π. (A) Magnitude responses, (B) relative passband magnitude response errors and (C)

passband phase response linearity errors of the IIR low-pass differentiator from (Nongpiur et al., 2014) (dash
dot lines) and the proposed one (solid lines).
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Table 6. Poles of the proposed nearly-linear phase IIR low-pass differentiators competing with the existing

ones from (Al-Alaoui, 2007; Nongpiur et al., 2014).
ωp

0.29π 0.3π 0.4π 0.5π 0.7π

0.6262 · e±j0.8222π 0.3260 0.6145 · ejπ 0.2516 0.7146 · ejπ
0.6421 · e±j0.4522π 0.4938 · ejπ 0.7023 · e±j0.5737π 0.7448 · e±j0.7016π 0.8666 · e±j0.7827π
0.4311 · e±j0.1380π 0.5986 · e±j0.5125π 0.3725 · e±j0.1784π 0.5822 · e±j0.5449π

0.5292 · e±j0.3178π
0.4964 · e±j0.1024π

the obtained low-pass differentiators, for all considered passband edge frequencies, is
lower or comparable to those of the existing IIR low-pass differentiators. The poles of
the IIR low-pass differentiators obtained by utilization of the proposed design method
are given in Table 6.

Increased orders of the proposed IIR low-pass differentiators in all the examples,
and consequently a higher group delay response, reflects the existance of the term z−L

in the transfer function of the proposed nearly-linear phase low-pass differentiators,
note (1). However, if the hardware implementation is considered and if the proposed
IIR low-pass differentiators require less multiplications compared to the existing ones,
which leads to lower power consumption, the proposed all-pass-based IIR low-pass
differentiators present an attractive alternative in applications where low passband
group delay is not required.

6. Conclusion

The novelty of the paper is the introduction of a new structure for the nearly-linear
phase IIR low-pass differentiators design composed of two parallel all-pass filters of
the same orders, where one of the all-pass branches is a pure delay. The magnitude
and phase responses of the proposed differentiators are shown to be related, such that
by controlling the value of the maximum passband magnitude response and the value
of the parameter γ, the passband phase response linearity error can also be effectively
controlled. The utilization of the proposed design method results in a transfer function
with a magnitude response approximating the ideal one in the weighted Chebyshev
sense both in the passband and the stopband. The order of the proposed IIR low-
pass differentiators equals double the order of the all-pass filter in one of the parallel
branches, while the required number of multiplications equals the order of the all-pass
filter if γ is adopted to equal the sum of a few power-of-two terms.

The results of the comparison show that although the minimum number of delays re-
quired by the proposed IIR low-pass differentiators (with comparable or lower average
squared magnitude responses, maximum absolute passband phase response linearity
and maximum relative passband magnitude errors) is obviously greater compared to
the existing nearly-linear phase IIR low-pass differentiators, the required number of
multiplications is usually decreased. This, if hardware implementation were to be con-
sidered, leads to lower power consumption, making the proposed all-pass-based IIR
low-pass differentiators an attractive alternative in applications where the low pass-
band group delay is not required.
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