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Abstract

The paper investigates the design of infinite-impulse response lowpass
differentiators based on second-order allpass filter application. Specifica-
tions of the lowpass differentiator are first transformed into specifications
of an equivalent second-order allpass filter. Unknown allpass filter coef-
ficients are then determined such that relative passband magnitude
response error of the corresponding lowpass differentiator is either min-
imized in the Chebyshev sense or maximally flat about some frequency
in the passband. The main advantage of the proposed differentiators is
their low group delay, which makes them suitable for real-time appli-
cations. Furthermore, the proposed equiripple design method exhibits
fast convergence, while the maximally flat method is characterized
by the simple closed-form expressions for the allpass filter coeffi-
cients values. Proposed lowpass differentiators are also compared with
some of the existing infinite-impulse response lowpass differentiators.

Keywords: Digital lowpass differentiator, Digital allpass filter, Equiripple
method, Maximally flat method

1 Introduction

Digital lowpass differentiators are required in various applications, among
which physiological signals processing [7, 11, 20], axial strain calculation in
ultrasound elastography [10], noise attenuation in control instrumentation [19],
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and dynamic phasor and frequency estimation [13]. Common to all these appli-
cations is that input signal’s time derivative at low frequencies needs to be
computed, while at the same time high-frequency noise suppressed. Like other
types of filters, lowpass differentiators can be designed as finite- or infinite-
impulse response (IIR) filters. In applications where perfectly linear passband
phase response is not required, IIR lowpass differentiators are preferred over
finite-impulse response lowpass differentiators due to lower filter order.

There are several approaches to the IIR lowpass differentiators design. The
conventional one is to cascade the IIR fullband differentiator and the corre-
sponding lowpass filter [4, 17]. Methods of the second approach are based on
inversion of integrator’s transfer function, followed by stabilization of unsta-
ble poles [1–3, 5], while methods of the third approach formulate the lowpass
differentiators design problem as constrained [6, 12, 16] or unconstrained opti-
mization problem [4, 21]. Utilization of the parallel allpass structure for the
design of the IIR lowpass differentiators was recently proposed in [18].

A new parallel allpass structure for the IIR lowpass differentiators design
is introduced in the paper, and two more allpass-based design methods are
derived. A starting point for these design methods is the transformation of
the lowpass differentiator’s specifications into specifications of the correspond-
ing second-order allpass filter. The first design method minimizes the relative
error of the passband magnitude response. On the other hand, as the highest
accuracy at frequencies about some frequency point is obtained by the maxi-
mally flat design [8, 9, 22], we also propose the maximally flat design method
where relative error of the passband magnitude response is maximally flat
about some frequency point.

The outline of the paper is as follows. In Sec. 2, an allpass-based IIR low-
pass differentiator design problem is formulated. Proposed design methods and
stability of obtained differentiators are discussed in Sec. 3, while design exam-
ples and comparison with the existing IIR lowpass differentiators are given in
Sec. 4. Finally, concluding remarks are drawn in Sec. 5.

2 Problem formulation

Transfer function of the considered second-order IIR lowpass differentiators is
assumed to be of the following form

H (z) = γ
1−D (z)

2
, γ > 0, (1)

where D (z) is the transfer function of the stable second-order allpass filter,

D (z) =
b+ az−1 + z−2

1 + az−1 + bz−2
, (2)
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which phase response, denoted by φ (ω), can be expressed in terms of the
coefficients a and b as

φ (ω) = arg
{
D
(
ejω
)}

= −2ω + 2 arctan
a sinω + b sin (2ω)

1 + a cosω + b cos (2ω)
. (3)

By moving to the Fourier domain, ie. substituting z = ejω in Eq. 1, phase
and magnitude responses of the considered IIR lowpass differentiators can be
formulated as functions of the previously defined φ (ω) as

ϕ (ω) = arg
{
H
(
ejω
)}

=
φ (ω) + π

2
, (4)∣∣H (ejω)∣∣ = γ · sin −φ (ω)

2
, (5)

since the phase response φ (ω) of the stable second-order allpass filter D (z) is
monotonically decreasing function for ω ∈ (0, π), while φ (0) = 0 and φ (π) =
−2π [15]. Therefore,

∣∣H (ej0)∣∣ =
∣∣H (ejπ)∣∣ = 0 and ϕ (0) = π/2, regardless the

values of the allpass filter coefficients a and b and the value of the parameter γ.
As the frequency response of an ideal IIR lowpass differentiator can be

expressed as

H̃
(
ejω
)

=

{
jωe−jωτ , ω ≤ ωp

0, ω > ωp
, (6)

where τ is the passband group delay, while ωp is the passband-edge frequency,
it can be concluded that magnitude response of the proposed IIR lowpass
differentiators, Eq. 5, approximates the ideal one if the phase response of the
stable allpass filter D (z) approximates

φ̃ (ω) =

{
−2 arcsin

(
ωγ−1

)
, ω ≤ ωp

−2π, ω > ωp
, (7)

where parameter γ obviously needs to satisfy γ ≥ ωp.
Now, if φ (ω) approximates φ̃ (ω) in the passband, the phase response of

the IIR lowpass differentiator, Eq. 4, approximates

ϕ̃ (ω) =
φ̃ (ω) + π

2
=

{
π/2− arcsin

(
ωγ−1

)
, ω ≤ ωp

−π/2, ω > ωp
, (8)

which is nearly-linear function of frequency in passband for γ � ωp. Denot-
ing the ideal average passband group delay of the proposed IIR low-pass
differentiators by

τ̃ =
ϕ̃ (0)− ϕ̃ (ωp)

ωp
=

1

ωp
arcsin

ωp
γ
, (9)
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passband phase response linearity error in ideal case can be expressed as

ϕ̃ (ω)−
(π

2
− ωτ̃

)
= ξ̃

(
x =

ω

ωp
, y =

γ

ωp

)
= x arcsin

1

y
− arcsin

x

y
. (10)

Plot of max
x∈[0,1]

ξ̃ (x, y) for y ∈ [1, 3] is shown in Figure 1. As expected, when

y = γ/ωp increases, passband phase response linearity error decreases. On the
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Fig. 1 Maximum passband phase response linearity error of the proposed IIR low-pass
differentiators in ideal case.

other hand, as the maximum of the magnitude response, occurring at frequency
ω = ω∗ where φ (ω∗) = −π, equals γ, note Eq. 5, γ should be close to ωp (ie.
y = γ/ωp should be close to 1) to avoid excessive gain in the stopband.

As digital lowpass differentiators are typically designed such that relative
error of the passband magnitude response is minimized [12], two algorithms for
determination of the allpass filter coefficients a and b, for predetermined value
of the parameter γ, are derived in this paper such that relative error of the
passband magnitude response of the corresponding IIR lowpass differentiator

ζ (ω) = ω−1
( ∣∣H (ejω)∣∣− ω), (11)

is either minimized in the Chebyshev sense or maximally flat about some
frequency in the passband.

To circumvent the magnitude response error function, Eq. 11, being inde-
terminate for ω = 0, sine term of the magnitude response, Eq. 5, is rewritten
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as

sin
−φ (ω)

2
= ω · λ (ω) = ω · (1− b) sincω√

1 + a2 + b2 + 2
[
a (1 + b) cosω + b cos (2ω)

] ,
(12)

where

sincω =

{
1, ω = 0

sinω/ω, ω 6= 0
. (13)

Notations ζ (ω, a, b), φ (ω, a, b) and λ (ω, a, b) are used in the following text
whenever dependence of ζ (ω), φ (ω) and λ (ω) on the allpass filter coefficients
a and b needs to be emphasized.

Note that the transfer function of the proposed IIR lowpass differentiators,
Eq. 1, requires at least 2 delays and 3 or 2 multiplications depending on the
value of the parameter γ; if γ is adopted to equals the sum of a few power-of-two
terms, only two multiplications are required.

3 Design methods

This section focuses on the methods for the design of IIR lowpass differen-
tiators based on second-order allpass filter application. The first proposed
design method, referred to as Equiripple method, minimizes the relative error
of the passband magnitude response in the Chebyshev sense; while the sec-
ond proposed design method, referred to as Maximally flat method, yields the
maximally flat relative error of the passband magnitude response about some
frequency ω = ω0 in the passband.

3.1 Equiripple method

If relative error of the passband magnitude response of the proposed IIR low-
pass differentiators, Eq. 11, is minimized in the Chebyshev sense, following is
satisfied

ζ (ω̂k) = (−1)
p+k

δ, (14)

for k = 1, 2, 3, where
δ = max

ω≤ωp

|ζ (ω)| , (15)

0 ≤ ω̂1 < ω̂2 < ω̂3 ≤ ωp are frequencies where sign-alternating extremal values
of ζ (ω) occur in the passband, while p equals either 0 or 1 depending on
whether local maximum or minimum of ζ (ω) occurs at ω = ω̂1.

Based on thorough inspection, it shows that p, figuring in Eq. 14, equals
0, ie. the local minimum of ζ (ω) occurs first. Furthermore, it also shows that
ω̂1 = 0 and ω̂3 = ωp. Having this in mind, and rewriting Eq. 11 by means of
Eq. 12 as

ζ (ω, a, b) = γλ (ω, a, b)− 1, (16)
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Eq. 14 becomes
γλ (0, a, b) = 1− δ,
γλ (ω̂2, a, b) = 1 + δ,

γλ (ωp, a, b) = 1− δ.
(17)

Now, after eliminating δ, previous system of equations reads

λ (0, a, b)− λ (ωp, a, b) = 0,

λ (ω̂2, a, b) + λ (0, a, b)− 2γ−1 = 0.
(18)

As evidenced, obtained system of equations consists of 2 equations in 2
unknowns, if ω̂2 assumed known. However, as ω̂2 is not known in advance, the
following exchange algorithm is proposed to obtain the unknown allpass filter
coefficients a and b:

1. t = 0. Determine a0 and b0 such that ζ (ω, a0, b0) exhibits 3 sign-alternating
extremal points in the closed interval [0, ωp] by setting the magnitude
response error equal to zero at two distinct frequencies:

ω′k = k
ωp
3
, k = 1, 2, (19)

which is equivalent to

φ (ω′k, a0, b0) = φ̃ (ω′k) = −2 arcsin
(
ω′kγ

−1) , k = 1, 2. (20)

Now, as from Eq. 3 the phase response of the allpass filter D (z) is related
to its coefficients as

a sin
φ (ω)

2
+ b sin

φ (ω)− 2ω

2
= − sin

φ (ω) + 2ω

2
, (21)

unknown initial solution coefficients can be obtained as[
a0
b0

]
=

[
ω′1γ

−1 sin
(
ω′1 + arcsin

(
ω′1γ

−1))
ω′2γ

−1 sin
(
ω′2 + arcsin

(
ω′2γ

−1))]−1 [sin (ω′1 − arcsin
(
ω′1γ

−1))
sin
(
ω′2 − arcsin

(
ω′2γ

−1))] .
(22)

2. Based on the known coefficients at and bt, determine 0 < ω̂
(t)
2 < ωp where

positive extremal value of the ζ (ω, at, bt) occurs; that is, the following
nonlinear equation (derived by equating the first derivative of the right
hand side of Eq. 16 to zero) needs to be solved

ω̂
(t)
2

[
at + (1 + bt) cos ω̂

(t)
2

] (
1 + at cos ω̂

(t)
2 + bt

)
− sin ω̂

(t)
2

{[
at + (1 + bt) cos ω̂

(t)
2

]2
+ (1− bt)2 sin2 ω̂

(t)
2

}
= 0.

(23)
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3. t = t+ 1. Update the unknown coefficients at and bt by solving the system
of nonlinear equations

λ (0, at, bt)− λ (ωp, at, bt) = 0,

λ
(
ω̂
(t−1)
2 , at, bt

)
+ λ (0, at, bt)− 2γ−1 = 0,

(24)

note Eq. 18.
4. If max {|at−1 − at| , |bt−1 − bt|} ≤ ∆tol, where ∆tol > 0 is the prescribed

tolerance, jump to the next step, otherwise proceed from the step 2.
5. The end of the algorithm. Unknown coefficients are a = at and b = bt.

Note that nonlinear equation (23) and system of nonlinear equations (24) can
be solved in a variety of ways using different methods. For example, one can

utilize the bisection method to determine ω̂
(t)
2 in step 2, and the Powell’s hybrid

method [14] with the solution estimates for at and bt set to at−1 and bt−1,
respectively, in the step 3.

IIR lowpass differentiators derived using the proposed equiripple design
method are not necessarily stable, which depends on the value of the parameter
γ. If unstable, transfer function needs to be stabilized by reflecting the unstable
pole(s) inside the unit circle, while magnitude needs to be compensated which
is equivalent to decrease of the parameter γ. However, it shows that obtained
differentiators are stable if γ < max {0.78π, 1.04ωp} for ωp ∈ (0.05π, 0.85π).

3.2 Maximally flat method

Since there are only two unknown allpass filter coefficients, a and b, maximally
flat design method starts from the following flatness conditions of ζ (ω) at
ω = ω0,

ζ (ω0, a, b) = 0, (25)

d

dω
ζ (ω, a, b)

∣∣∣∣
ω=ω0

= 0. (26)

As it shows that Eq. 26 is always satisfied for ω0 = 0, flatness conditions of
ζ (ω) at ω = ω0 = 0 are given by Eq. 25 and

d2

dω2
ζ (ω, a, b)

∣∣∣∣
ω=0

= 0. (27)

Therefore, for ω0 = 0 corresponding system of nonlinear equations obtained
from Eqs. 25 and 27 by means of Eqs. 11 and 12 reads

(1 + a+ b)
2 − γ2 (1− b)2 = 0, (28)

−a2 + ab+ a− b2 + 10b− 1 = 0, (29)
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which, after taking into account only a solution satisfying b < 1, yields

a = 2
2γ2 − 3

γ2 + 3γ + 3
, (30)

b =
γ2 − 3γ + 3

γ2 + 3γ + 3
. (31)

However, such obtained coefficients a and b are acceptable only if resulting IIR
lowpass differentator’s transfer function is stable, which shows to be true for
γ < 0.7797π.

On the other hand, for ω0 6= 0 following system of nonlinear equations is
obtained from Eqs. 25 and 26 by means of Eqs. 11 and 12:

1 + a2 + b2 + 2 [a (1 + b) cosω0 + b cos (2ω0)]− γ2 (1− b)2 sinc2ω0 = 0, (32)

ω0 [a+ (1 + b) cosω0] (1 + a cosω0 + b)

− sinω0

{
[a+ (1 + b) cosω0]

2
+ (1− b)2 sin2 ω0

}
= 0,

(33)

which, after eliminating solution that always results in unstable transfer
functions, yields following solution for the unknown filter coefficients:

a = 2

(
1− p2

)
− sinc (2ω0)

q
, (34)

b = 1− 2
p
√

1− p2
q

sinω0, (35)

where

p =
ω0

γ
, (36)

q = sincω0 −
(
1− p2

)
cosω0 + p

√
1− p2 sinω0. (37)

Again, coefficients a and b, determined by previous equations, are acceptable
only if resulting IIR lowpass differentiator’s transfer function is stable, which
shows to be true for γ < 0.7879π and every ω0 < γ, while for γ > 0.7879π,
ω0 should not be chosen too small. Note that Eq. 33 is of the same form as
Eq. 23, which is expected as both equations are derived by equating the first
derivative of the Eq. 16 to zero.

4 Design examples and comparison with the
existing IIR lowpass differentiators

In this section design examples of the allpass-based IIR lowpass differen-
tiators obtained by proposed design methods are discussed. All considered
differentiators are stable as conditions derived in subsections 3.1 and 3.2 are
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satisfied. Proposed differentiators are also compared with the existing allpass-
based differentiators from [18] and nearly-linear phase lowpass differentiators
from [4].

It should be noted that transfer functions of second-order IIR lowpass
differentiators from [1–3] can be also expressed in the form given by Eq. 1,
however, corresponding allpass filters have double real poles, ie. one degree
of freedom less than proposed lowpass differentiators, while passband-edge
frequencies are not taken into account in the design of these differentiators.

To properly characterize considered IIR lowpass differentiators in the
passband, the average passband group delay

τ =
ϕ (0)− ϕ (ωp)

ωp
=

π

2ωp
− ϕ (ωp)

ωp
, (38)

along with the corresponding passband phase response linearity error function
in degrees [12]

ξ (ω) =
180

π
·
[
ϕ (ω)−

(π
2
− ωτ

)]
, (39)

as well as the maximum relative passband magnitude response error δ defined
by Eq. 15, and the maximum absolute passband phase response linearity error

η = max
ω≤ωp

|ξ (ω)| , (40)

are used. In stopband, IIR lowpass differentiators are characterized by the
average squared stopband magnitude response defined as

Psb =
1

π − ωp

∫ π

ωp

∣∣H (ejω)∣∣2 dω. (41)

4.1 IIR lowpass differentiators obtained by Equiripple
method

The proposed equiripple method is utilized to design the IIR lowpass differ-
entiators of various passband edges ωp ∈

{
0.2π (1 + k/13)

∣∣ 0 ≤ k ≤ 39
}

and
γ/ωp ∈ {1, 1.02, 1.04}. ∆tol in all examples equals 10−8. Fast convergence is
observed, ie. the needed number of iterations in the worst case equals 4. Plots
of δ, η, Psb and τ as functions of ωp, for three values of γ/ωp, are shown in
Figure 2. It can be observed that when the value of the parameter γ increases,
the maximum relative passband magnitude response error δ and the maximum
absolute passband phase response linearity error η decrease, note Figure 2A
and Figure 2B. Further, as can be observed from Figure 2C, the average pass-
band squared stopband magnitude response Psb increases with the increase
of the parameter γ. This conclusion is however expected, since, as mentioned
before, the maximum of the magnitude response equals γ. On the other hand,
the average passband group delay decreases when γ increases, Figure 2D. From
the previous discussion, it follows that when δ and η decrease (which is achieved
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Fig. 2 IIR lowpass differentiators obtained by Equiripple method. (A) δ, (B) η, (C) Psb

and (D) τ as functions of ωp ∈ [0.2π, 0.8π] for three values of γ/ωp.

by increasing the value of γ), Psb increases, and vice versa. Therefore, γ should
be chosen with great concern.

4.2 IIR lowpass differentiators obtained by Maximally
flat method

The proposed maximally flat method is utilized to design the IIR lowpass dif-
ferentiators of various passband edges, ωp ∈

{
π (0.2 + 0.55k/39)

∣∣ 0 ≤ k ≤ 39
}

,
ω0/ωp ∈ {0, 0.5, 0.65} and γ/ωp = 1.04. Plots of δ, η, Psb and τ as functions
of ωp, for three values of ω0/ωp, are shown in Figure 3. It can be observed
that when ω0/ωp increases, δ decreases, while η increases, note Figure 3A and
Figure 3B. Furthermore, from Figures 2 and 3 it can be concluded that the
passband phase response linearity error of differentiators designed using the
maximally flat method, can be considerably lower compared to the differentia-
tors designed using the equiripple method; this, however, comes at the price
of somewhat higher maximum relative passband magnitude response error.

In order to get insight on how the choice of the parameter γ affects
the performances of differentiators, maximally flat method is utilized
to design the lowpass differentiators of various passband edges, ωp ∈{
π (0.2 + 0.55k/39)

∣∣ 0 ≤ k ≤ 39
}

, ω0 = ωp/2 and γ/ωp ∈ {1, 1.025, 1.05}.
Plots of δ, η, Psb and τ as functions of ωp, for three values of γ/ωp, are shown
in Figure 4. From these plots it can be observed that when γ increases, both δ
and η decrease, while Psb increases. This conclusion is expected as maximum
of the magnitude response of the proposed differentiators equals γ. Therefore,
as in the case of equiripple design method, the value of the parameter γ should
be chosen such that a compromise is made between the stopband behavior and
the passband phase response linearity and relative magnitude response errors.

It should be noted that transfer function of the second-order lowpass differ-
entiator obtained by inverting the transfer function of the Simpson integrator
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Fig. 3 IIR lowpass differentiators obtained by Maximally flat method. (A) δ, (B) η, (C)
Psb and (D) τ as functions of ωp ∈ [0.2π, 0.75π] for three values of ω0/ωp and γ = 1.04ωp.
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Fig. 4 IIR lowpass differentiators obtained by Maximally flat method. (A) δ, (B) η, (C)
Psb and (D) τ as functions of ωp ∈ [0.2π, 0.75π] for three values of γ/ωp and ω0 = ωp/2.

followed by stabilization and magnitude compensation [2]

Hs (z) =
3
(
1− z−2

)
3.7321π (1 + 0.2679z−1)

2 , (42)

can be obtained by the proposed maximally flat method if γ = max
∣∣Hs

(
ejω
)∣∣

and ω0 = 0.

4.3 Comparison with the existing allpass-based IIR
lowpass differentiators

Utilization of the structure composed of two parallel allpass filters of the same
orders, where one of the branches is a pure delay, for the design of the nearly-
linear phase IIR lowpass differentiators was recently proposed in [18]. Transfer



Springer Nature 2021 LATEX template

12 Design of IIR lowpass differentiators

function of these differentiators is of the following form

H1 (z) = γ1
AL (z)− z−L

2
, (43)

where AL (z) is the L-th order stable allpass filter.
To properly compare the allpass-based IIR lowpass differentiators from [18]

with the proposed ones obtained by equiripple method, they have to be of the
same order, ie. L = 1, while weighting function in [18] have to be adopted such
that relative error of the passband magnitude response is minimized in the
Chebyshev sense. Substituting L = 1 and A1 (z) =

(
a1 + z−1

)
/
(
1 + a1z

−1)
in Eq. 43, followed by some algebraic manipulations, transfer function of
the second-order allpass-based IIR lowpass differentiators from [18] can be
expressed as

H1 (z) =
γ1a1

2

(
1− a1z

−1 + z−2

1 + a1z−1

)
. (44)

On the other hand, if b = 0 in Eq. 2, transfer function given by Eq. 1 reduces
to Eq. 44, where obviously γ1 = γ/a1, while γ1a1 is the maximum of the mag-
nitude response. Therefore, second-order IIR lowpass differentiators from [18]
have one degree of freedom less than the proposed differentiators.

Lowpass differentiators from [18] are designed with γ1 = 2.25ωp for
ωp = 0.3π and γ1 = 2ωp for ωp = 0.5π, while proposed differentiators are
designed by means of equiripple method with γ = γ1a1. In this way, pro-
posed and differentiators from [18] have equal maximums of the magnitude
responses. Magnitude responses, relative passband magnitude response errors,
and the passband phase response linearity errors of obtained allpass-based low-
pass differentiators are given in Figure 5. As can be observed from these plots,
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Fig. 5 Allpass-based IIR lowpass differentiators from [18] (dashed lines) and the proposed
differentiators (solid lines): (A) Magnitude responses, (B) Relative passband magnitude
response errors, (C) Passband phase response linearity errors.
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proposed lowpass differentiators exhibit considerably lower relative passband
magnitude response errors and better stopband behavior, but worse phase
response linearity, compared to differentiators from [18]. Results of the com-
parison are summarized in Table 1. Denominator coefficients of the proposed

Table 1 Comparison between proposed and the IIR lowpass differentiators from [18].
Values that correspond to the lowpass differentiators from [18] are placed in brackets.

ωp τ η δ · 100% Psb

0.3π 0.53 (0.52) 0.46 (0.03) 0.03 (1.87) 2.40 (2.62)
0.5π 0.78 (0.69) 6.58 (1.37) 1.83 (7.60) 1.48 (1.88)

lowpass differentiators, along with the corresponding values of the parameter
γ, are given in Table 2.

Table 2 a, b and γ of the IIR lowpass differentiators competing the existing ones from [18].

ωp γ a b

0.3π 1.96065857 0.72158452 0.08097646
0.5π 1.63652373 0.30741904 0.13483000

4.4 Comparison with the nearly-linear phase lowpass
differentiators from [4]

Two types of nearly-linear phase IIR lowpass differentiators are proposed in [4],
unoptimized and optimized. The unoptimized differentiators are obtained by
cascading the transfer function given by Eq. 42 with the third-order Chebyshev
I lowpass filters having 0.1 dB ripple in the passband. On the other hand,
optimized lowpass differentiators are derived from the unoptimized ones by
altering the denominators coefficients such that resulting filters approximate
a linear phase filters with magnitude response error also minimized [4].

As transfer function given by Eq. 42 can be obtained by means of the
proposed maximally flat method if γ = max

∣∣H (ejω)∣∣ and ω0 = 0, low-
pass differentiators obtained by the proposed equiripple method are compared
only to the optimized fifth-order nearly-linear phase IIR lowpass differentia-
tors from [4] having the passband-edge frequencies equal to 0.3π, 0.4π and
0.5π. Values of the parameter γ of the proposed IIR lowpass differentiators
are chosen as: γ = 1 for ωp = 0.3π, γ = 1.03ωp for ωp = 0.4π, and γ = ωp
for ωp = 0.5π. Magnitude responses, relative passband magnitude response
errors, and the passband phase response linearity errors of the proposed and
the lowpass differentiators from [4] are shown in Figure 6, while results of the
comparison are summarized in Table 3.

As proposed allpass-based differentiators are of second-order, comparison
with the fifth-order lowpass differentiators may seem to be inappropriate.
However, it is performed to illustrate that proposed second-order lowpass
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Fig. 6 Optimized IIR lowpass differentiators from [4] (dashed lines) and the proposed
differentiators (solid lines), γ = 1 for ωp = 0.3π, γ = 1.03ωp for ωp = 0.4π and γ = ωp for
ωp = 0.5π: (A) Magnitude responses, (B) Relative passband magnitude response errors, (C)
Passband phase response linearity errors.

Table 3 Comparison between proposed and the IIR lowpass differentiators from [4].
Values that correspond to the lowpass differentiators from [4] are placed in brackets.

ωp τ η δ · 100% Psb

0.3π 1.25 (2.34) 5.38 (6.28) 2.07 (2.56) 0.41 (0.24)
0.4π 0.99 (1.98) 6.58 (10.59) 2.32 (2.34) 0.78 (0.41)
0.5π 0.85 (1.66) 8.29 (11.78) 2.71 (6.70) 1.24 (0.89)

differentiators can have lower passband phase response linearity and rela-
tive passband magnitude response errors compared to existing differentiators,
note Figures 6B and 6C and Table 3. Furthermore, proposed differentiators
also have lower average passband group delay, Table 3. On the other hand,
optimized lowpass differentiators from [4] have narrower transition bands,
Figure 6A, and lower average squared stopband magnitude response, Table 3,
due to the higher filter order. Therefore, in applications where stopband behav-
ior of the proposed second-order allpass differentiators is not acceptable, higher
order differentiators have to be used.

The denominator coefficients of the proposed recursive lowpass differen-
tiators, along with the corresponding values of the parameter γ, are given in
Table 4.

Table 4 a, b and γ of the IIR lowpass differentiators competing the existing ones from [4].

ωp γ a b

0.3π 1 −0.47964673 0.24777529
0.4π 1.03ωp −0.10745552 0.18604941
0.5π ωp 0.20015191 0.15851931
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5 Conclusion

The novelty of the paper is the introduction of a new structure for the recur-
sive lowpass differentiators design. This structure allows transformation of the
differentiator specifications into specifications of an equivalent second-order all-
pass filter. Then, two methods for determination of the allpass filter coefficients
are derived such that relative error of the passband magnitude response of the
corresponding IIR lowpass differentiator is either minimized in the Chebyshev
sense or maximally flat about some frequency.

While the equiripple design method exhibits fast convergence, the max-
imally flat method is characterized by the closed-form expressions for the
coefficients values. It is shown that differentiators designed using maximally
flat method can exhibit considerably lower passband phase response linearity
errors compared to the differentiators designed using the equiripple method.
An important feature common to both design methods is that value of the
parameter γ needs to be chosen such that a compromise is made between the
stopband behavior on one side, and the passband phase response linearity and
relative magnitude response errors on other.

Results of comparison with the existing allpass-based recursive lowpass dif-
ferentiators show that proposed differentiators exhibit lower relative passband
magnitude response error and better stopband behavior, while comparison
with some of the existing fifth-order differentiators shows that proposed dif-
ferentiators can have lower passband phase response linearity and relative
passband magnitude response errors. Finally, proposed recursive lowpass dif-
ferentiators require only two or three multiplications and two delays which
makes them suitable for real-time applications.
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