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Abstract

The paper investigates the design methods for the minimum-order allpass-based

infinite impulse response multi-notch filters. Monotonically decreasing nature of

the stable allpass filter’s phase response allows the formulation of the magnitude

response specifications of the allpass-based multi-notch filter as the linear equal-

ity and inequality constraints in unknown allpass filter coefficients. As not all

allpass filters satisfying mentioned constraints are of the same practical interest,

several design methods minimizing various cost functions are proposed. One of

these methods outperforms existing design methods in terms of stability margin,

while utilization of other methods can result in higher area under the passbands

squared magnitude response. Proposed methods are also compared with some of

the existing infinite impulse response multi-notch filter design methods, whose

lower complexity counterparts are derived by means of conclusions drawn and

notations introduced while deriving the proposed design methods.

Keywords: digital multi-notch filter, allpass filter, magnitude response, linear

and quadratic programming

1. Introduction

In wide range of practical applications, from physiological signals preprocess-

ing [1, 2, 3] to satellite system receivers [4], exist necessity for the multi-notch
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filters whose role is to eliminate certain frequency components from the input

signal’s spectrum, while keeping the other components intact. Frequency re-5

sponse of these filters in ideal case is of the following form

Hd

(
ejω

)
=

 0, ω ∈ {ωn,k | k = 1, 2, . . . , K}

1, otherwise
, (1)

where ωn,k denotes frequency of the k-th input signal’s spectral component

that needs to be suppressed, while K denotes total number of such frequen-

cies. Previous equation suggests zero notch-bandwidths which cannot be prac-

tically realized, and would also be highly undesirable having in mind that tran-10

sient response duration to the sinusoidal interferences of frequencies ωn,k, for

k = 1, 2, . . . , K, in case of zero notch-bandwidths, is infinitely long [5, 6, 7].

Therefore, specifications of practical multi-notch filter also comprise non-zero

notch-bandwidths ∆ωk, k = 1, 2, . . . , K, defining the left- and right-hand cutoff

frequencies15

ωl,k = ωn,k −∆ωk/2,

ωr,k = ωn,k +∆ωk/2,
(2)

at which attenuation in dB should be less than or equal to a. It should be noted

that higher the ∆ωk is (therefore lower radius of the pole whose angle is closest

to the ωn,k), transient response duration to sinusoidal interference of frequency

ωn,k is shorter [5, 6, 7]. Attenuation at which notch-bandwidths are specified,

a, usually equals 3 dB.20

Generally, digital multi-notch filters can be designed either as infinite impulse

response (IIR) or finite impulse response filters. Aside the fact that linear pass-

bands phase response can be easily obtained by finite impulse response struc-

ture which is inherently stable, obtained multi-notch filter order is significantly

higher compared to IIR filter counterpart. Although the design methods for25

the higher order IIR multi-notch filters, characterized by improved magnitude

and/or phase response, are also considered in the literature [8, 9, 10, 11, 12], a

design methods for the minimum-order (ie. the order equals double the number

of notch frequencies) IIR multi-notch filters are considered in this paper. The
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majority of the minimum-order IIR multi-notch filter design methods belong to30

one of the four approaches briefly discussed bellow, where only methods whose

utilization result in the exact satisfaction of the notch frequencies specifications

are considered.

Conventional approach to the IIR multi-notch filter design is to cascade sev-

eral IIR notch filters [13, 14]. This approach is applicable if number of notch35

frequencies is small and notch-bandwidths are narrow, otherwise, magnitude re-

sponse of obtained filters exhibits uncontrollable passbands gain between notch

frequencies [15, 16].

Optimum poles placement-based design methods [17, 18, 19, 20] formulate

the IIR multi-notch filter design problem as the minimization problem in un-40

known poles’ locations, as zeros are located at the unit circle at phase angles

equal to the specified notch frequencies. While method [17] suboptimally de-

termines the unknown poles using iterative Steiglitz-McBride scheme [21] and

quadratic programming, methods presented in [18, 20] determine the poles’

angles using metaheuristic algorithms assuming known pole radii determined45

directly from the corresponding 3 dB notch-bandwidths. The main drawback of

the optimum poles placement methods, apart from the facts that method [17]

does not consider notch-bandwidths’ specifications, while methods [18, 20] are

applicable only if attenuation at cutoff frequencies equals 3 dB, is that extremal

values of the magnitude response are not necessarily equal in all passbands.50

Methods of the squared magnitude function approach [22, 23] are based on

the design of the denominator of the IIR multi-notch filter squared magnitude

response. Namely, mentioned denominator is first expressed as a rational poly-

nomial function of x = tan2 (ω/2) = − [(z − 1) / (z + 1)]
2
z=ejω in [22] and a

polynomial of x = cos (ω) = 0.5
(
z + z−1

)
z=ejω

in [23], and then designed by55

the local maxima positions of the magnitude response and an additional param-

eter by which value realized notch-bandwidths are guaranteed to be less than

the specified ones.

Finally, allpass-based design methods [24, 25, 16, 26, 27] start from the IIR

multi-notch filter transfer function expressed as H (z) = 1
2 (1 +A (z)), where60
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A (z) is the transfer function of the stable allpass filter of order 2K. It is well

known that such transfer functions can be realized using efficient lattice struc-

tures [13, 16]. As phase response of the stable allpass filter is monotonically

decreasing function in frequency, IIR multi-notch filter’s magnitude response

specifications can be transformed into corresponding allpass filter’s phase re-65

sponse specifications that can be expressed in linear form. Method in [26]

assumes the identical pole radii of all poles and unknown coefficients are de-

termined such that specifications of notch frequencies positions are satisfied.

On the other hand, methods presented in [25, 24, 16] utilize notch and left-hand

cutoff frequencies or notch and right-hand cutoff frequencies as filter design con-70

straints, while method presented in [27] utilizes notch and both left- and right-

hand cutoff frequencies. All of mentioned allpass-based IIR multi-notch design

methods are non-iterative and although methods from [16, 26, 24, 25] consider

attenuation value at the cutoff frequencies equal to 3 dB, some of them, that is

methods presented in [24, 25, 16], can be generalized to a case of an arbitrary75

attenuation value at which notch-bandwidths are specified. It should be noted

that transfer functions obtained by utilization of methods [22, 23] can be also

expressed as H (z) = 1
2 (1 +A (z)), however, these methods are not considered

to be allpass-based in this paper, as specifications of the magnitude response are

not transformed into phase response specifications of the corresponding allpass80

filter.

To the best of our knowledge, utilization of the existing minimum-order

IIR multi-notch filter design methods, except the ones presented in [22, 23],

in general, does not result in satisfaction of specifications regarding the max-

imum attenuation value in passbands, which is followed by distortion of the85

input signal’s spectrum components. Furthermore, there is no design method

that minimizes the maximum poles radius, thus maximizing the filter’s stabil-

ity margin. In this paper, a new minimum-order allpass-based IIR multi-notch

filter design problem setting is first introduced and several design methods min-

imizing various cost functions are proposed. One of these methods outperforms90

existing methods in terms of stability margin, while utilization of other methods
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can result in higher area under the passbands squared magnitude response.

The rest of the paper is organized as follows. Allpass-based IIR multi-notch

filter design problem is formulated in Sec. 2, while several design methods are

discussed in Sec. 3. Filters obtained using the proposed methods are compared95

to filters obtained using existing design methods in Sec. 4. Finally, concluding

remarks are drawn in Sec. 5.

2. Problem Formulation

As already mentioned, specifications of the IIR multi-notch filter magnitude

response comprise notch frequencies positions and notch-bandwidths defining100

left- and right-hand cutoff frequencies, Eq. (2), specified at attenuation value of

a in dB. In other words, following should be satisfied

H
(
ejωn,k

)
= 0, k = 1, 2, . . . , K, (3)

−20 log10
∣∣H (

ejω
)∣∣ ≤ a, ω ∈ P, (4)

where P denotes set of frequencies in the passbands

P = (0, π) \
K⋃

k=1

{ω |ωl,k < ω < ωr,k} . (5)

Transfer function of the allpass-based minimum-order IIR multi-notch filter

is of the following form105

H (z) =
1

2
(1 +A (z)) , (6)

where A (z) is the transfer function of the stable allpass filter of order 2K,

A (z) = z−2KP
(
z−1

)
P−1 (z) , (7)

and

P (z) = 1 +

2K∑
i=1

piz
−i, (8)

while p1, p2, . . . , p2K are the allpass filter coefficients. Substituting z = ejω in

Eq. (6), followed by simple algebraic calculation, the frequency response of the

allpass-based IIR multi-notch filter can be expressed as110

H
(
ejω

)
= ej

φ(ω)
2 cos

φ (ω)

2
, (9)
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where φ (ω) is the phase response of the allpass filter A (z),

φ (ω) = −2Kω − 2 arg
{
P
(
ejω

)}
. (10)

Employing the fact that the phase response φ (ω) of the stable allpass filter

A (z) is monotonically decreasing function for ω ∈ (0, π), while φ (0) = 0 and

φ (π) = −2Kπ [13, 24], from Eq. (9) it can be concluded that the magnitude

response specifications given by Eqs. (3) and (4) are equivalent to115

cos
φ (ωn,k)

2
= 0, (11)

(−1)
k−1

cos
φ (ωl,k)

2
≥ 10−a/20, (12)

(−1)
k
cos

φ (ωr,k)

2
≥ 10−a/20, (13)

for k = 1, 2, . . . , K.

Now, by means of trigonometrical identities

cos (arg{·}) = Re{·}
|·|

, sin (arg{·}) = Im{·}
|·|

,

and Eq. (10), cosine and sine of the half allpass filter’s phase response can be

rewritten in terms of its coefficients as

cos
φ (ω)

2
=

R (ω)√
R2 (ω) +Q2 (ω)

, (14)

sin
φ (ω)

2
=

Q (ω)√
R2 (ω) +Q2 (ω)

, (15)

where120

R (ω) = pK + (1 + p2K) cos (Kω) +

K−1∑
i=1

(pK+i + pK−i) cos (iω) , (16)

Q (ω) = (p2K − 1) sin (Kω) +

K−1∑
i=1

(pK+i − pK−i) sin (iω) . (17)

Utilizing Eq. (14) and observing that

(−1)
k
Q (ωl,k) ≥ 0,

(−1)
k
Q (ωr,k) ≥ 0,

(18)
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which follows from the monotonically decreasing nature of φ (ω) and Eq. (15),

Eqs. (11), (12) and (13), after some algebraic manipulations, can be rewritten

as

R (ωn,k) = 0, (19)

(−1)
k−1 [

sinα ·R (ωl,k) + cosα ·Q (ωl,k)
]
≥ 0, (20)

(−1)
k [

sinα ·R (ωr,k)− cosα ·Q (ωr,k)
]
≥ 0, (21)

for k = 1, 2, . . . , K, respectively, where125

cosα = 10−a/20 (22)

and 0 < α < π/2.

Having in mind previous discussion, design problem of the minimum-order

allpass-based IIR multi-notch filter reduces to determination of unknown coef-

ficients of the corresponding stable allpass filter such that Eqs. (19), (20) and

(21) are satisfied. However, not all allpass filter coefficients satisfying mentioned130

equations are of the same interest since the increase in values of the left-hand

sides of Eqs. (20) and (21) reflects the decrease of the attenuation at the cor-

responding cutoff frequencies, which is a consequence of the fact that these

equations are derived from Eq. (4) by considering the monotonically decreasing

nature of the stable allpass filter’s phase response. This, on the other hand, is135

usually followed by increase of the corresponding pole radius, ie. the prolonged

duration of the transient response to the sinusoidal interference. Furthermore,

filters having lower maximum pole radius have higher stability margin [28, 23].

Therefore, values of the left-hand sides of Eqs. (20) and (21) should be treated

with great concern.140

3. Proposed Design Methods

By closely observing Eq. (19), defining a system of K linear equations in 2K

unknown allpass filter coefficients, it can be concluded that it can be rewritten
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as a square system of linear equations in K unknowns

ui =

 pK/ (1 + p2K) , i = 1

(pK+i−1 + pK−i+1) / (1 + p2K) , 2 ≤ i ≤ K
, (23)

as145

ΦN · u = γN , (24)

where u = [ui] is the K × 1 vector, while ΦN =
[
ϕ
(N)
ki

]
and γN =

[
γ
(N)
k

]
are

K ×K square matrix and K × 1 vector, respectively, with elements

ϕ
(N)
ki = cos ((i− 1)ωn,k) ,

γ
(N)
k = − cos (Kωn,k) .

(25)

Incorporating specifications regarding the notch frequencies positions given

by u = Φ−1
N · γN , note Eq. (24), in Eqs. (20) and (21), it follows that stable

allpass-based IIR multi-notch filter complies with magnitude response specifi-150

cations if

ΦL · v − γL ≥ 0, (26)

ΦR · v − γR ≥ 0, (27)

where v = [vi] is the K × 1 vector with elements

vi =

 (1 + p2K) / (1− p2K) , i = 1

(pK−i+1 − pK+i−1) / (1− p2K) , 2 ≤ i ≤ K
, (28)

while ΦL =
[
ϕ
(L)
ki

]
and ΦR =

[
ϕ
(R)
ki

]
are K × K matrices, γL =

[
γ
(L)
k

]
and

γR =
[
γ
(R)
k

]
are K × 1 vectors, with elements

ϕ
(L)
ki =

 (−1)
k−1

sinα ·
[
cos (Kωl,k) + c (ωl,k) · u

]
, i = 1

(−1)
k
cosα · sin ((i− 1)ωl,k) , 2 ≤ i ≤ K

,

ϕ
(R)
ki =

 (−1)
k
sinα ·

[
cos (Kωr,k) + c (ωr,k) · u

]
, i = 1

(−1)
k
cosα · sin ((i− 1)ωr,k) , 2 ≤ i ≤ K

,

γ
(L)
k = (−1)

k−1
cosα · sin (Kωl,k) ,

γ
(R)
k = (−1)

k−1
cosα · sin (Kωr,k) ,

(29)
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where c (ω) denotes vector155

c (ω) = [1 cosω cos (2ω) . . . cos ((K − 1)ω)] . (30)

As Eq. (18) and 0 ≤ p2K < 1 are used while deriving Eq. (26), they have

to be included as design constraints to ensure stability of the allpass-based IIR

multi-notch filter. Utilizing Eqs. (28) and (29), these additional constraints can

be formulated as linear inequalities
−1 01×(K−1)

0K×1 Φ̃L

0K×1 Φ̃R

v ≤


−2

γL

γR

 , (31)

where ΦL and ΦR are partitioned as160

ΦL =
[
ηL Φ̃L

]
,

ΦR =
[
ηR Φ̃R

]
,

(32)

while ηL and ηR are column vectors.

Therefore, allpass-based IIR multi-notch filter design problem reduces to

determination of vector v such that some objective function is optimized subject

to constrains given by Eqs. (26), (27) and (31). Once vector v is determined,

unknown allpass filter coefficients can be determined from Eqs. (23) and (28) as165

pi =



(v1uK−i+1 + vK−i+1) / (v1 + 1) , 1 ≤ i ≤ K − 1

2v1u1/ (v1 + 1) , i = K

(v1ui−K+1 − vi−K+1) / (v1 + 1) , K + 1 ≤ i ≤ 2K − 1

(v1 − 1) / (v1 + 1) , i = 2K

. (33)

The first proposed design method, referred to as Method A, minimizes the

geometric mean of the multi-notch filter pole radii, 4
√
p2K , subject to constraints

given by Eqs. (26), (27) and (31). Since from Eq. (28) it follows that

dv1
dp2K

> 0,

minimization of the geometric mean of IIR multi-notch filter pole radii reduces

to minimization of v1. Therefore, a linear programming minimization problem170
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characterizing the proposed Method A reads

minimize
v

v1

subject to: Eqs. (26), (27), (31)
. (34)

The second proposed design method, referred to as Method B, minimizes

the maximum of the left-hand sides of Eqs. (26) and (27) subject to constraints

given by Eqs. (26), (27) and (31). Therefore, Method B is characterized by the

following linear programming minimization problem175

minimize
v, δ

δ

subject to: Eqs. (26), (27) and (31), ΦL

ΦR

v −

 γL

γR

 ≤ δ · 12K×1

. (35)

The third proposed design method, referred to as Method C, minimizes the

weighted Euclidean norm of the left-hand sides of Eqs. (26) and (27),

(ΦL · v − γL)
T
WT

L WL (ΦL · v − γL)+(ΦR · v − γR)
T
WT

RWR (ΦR · v − γR) ,

subject to constraints given by Eqs. (26), (27) and (31), where WL and WR

are K × K diagonal matrices with nonnegative elements w
(L)
k ∈ [0, 1] and

w
(R)
k ∈ [0, 1 ] on their diagonals, respectively, while the superscript T denotes180

the transpose matrix operator. Therefore, Method C is characterized by the

following quadratic programming minimization problem

minimize
v

vT
(
ΦT

L WT
L WLΦL +ΦT

RWT
RWRΦR

)
v

−2
(
γTL WLΦL + γTRWRΦR

)
v

subject to: Eqs. (26), (27) and (31)

. (36)

Selection of weighting factors w
(L)
k and w

(R)
k , k = 1, 2, . . . , K, can be based

on either some heuristics or some optimality criteria. In this paper, three heuris-

tic options to select weighting factors are proposed:185

1. WL = I, WR = 0, where I denotes the identity matrix. In other words,

Euclidean norm of the left-hand side of Eq. (26) is minimized subject to
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constraints given by Eqs. (26), (27) and (31). If weighting factors are

selected this way, Method C is referred to as Method C-L.

2. WL = 0, WR = I. In this case, Euclidean norm of the left-hand side of190

Eq. (27) is minimized subject to constraints given by Eqs. (26), (27) and

(31). If weighting factors are selected this way, Method C is referred to as

Method C-R.

3. WL = WR = I, ie. Euclidean norm of left-hand sides of both Eqs. (26)

and (27) is minimized subject to constraints given by Eqs. (26), (27) and195

(31). If weighting factors are selected this way, Method C is referred to as

Method C-LR.

As stated before, the selection of weighting factors can also be performed to

comply with a given optimality criteria subject to compliance with Eqs. (26),

(27) and (31). When minimization of the maxium radius of the IIR multi-notch200

filter poles, denoted by ρmax, is considered, weighting factors are determined

such that

[W∗
L W∗

R] = argmin
WL,WR

ρmax (WL, WR) . (37)

In the paper, optimization problem given by previous equation is solved using

Particle Swarm Optimization (PSO) algorithm. If weighting factors are deter-

mined in this manner, Method C is referred to as Method C-M.205

4. Comparison with the Existing Design Methods

Proposed design methods are only compared to existing design methods

that guarantee the satisfaction of notch frequencies positions’ specifications,

and either consider the arbitrary attenuation value at which cutoff frequencies

are specified, or can be generalized to such a case. Examination of the exist-210

ing literature shows that there are only four such methods: two of which are

from [24, 25, 16], the third one is proposed in [23], while the fourth one is

from [27]. Furthermore, transfer functions obtained using these existing design

methods can be alternatively derived using conclusions drawn and notations

introduced in the previous sections as follows:215
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1) Method I from [16] utilizes notch and left-hand cutoff frequencies’ specifica-

tions in the design process, while the attenuation at left-hand cutoff frequen-

cies equals 3 dB. It should be noted that Method I from [16] is practically the

same as the methods presented in [24, 25] with overcame limitations regard-

ing to tangent operations. Generalization of this method, in the following220

text referred to as Method D, to handle arbitrary attenuation value at which

cutoff frequencies are specified, is equivalent to equating the left-hand side

of Eq. (26) to zero, ie. v can be determined as

v = Φ−1
L · γL. (38)

IIR multi-notch filters designed by Method D do not necessarily satisfy mag-

nitude response specifications regarding the maximum attenuation in pass-225

bands since Eq. (27) is not utilized by the design method. Furthermore, as

vector v, given by Eq. (38), is also a solution to the unconstrained opti-

mization problem with Euclidean norm of the left-hand sides of Eq. (26) as

objective function, if Eq. (27) is satisfied by filter obtained using Method D,

the same filter is also obtained by Method C-L.230

2) Method II from [16] utilizes notch and right-hand cutoff frequencies’ spec-

ifications in the design process, while the attenuation at right-hand cutoff

frequencies equals 3 dB. From Eq. (27), it follows that vector v, that corre-

sponds to generalization of Method II [16], in the following text referred to as

Method E, to handle arbitrary attenuation value at which cutoff frequencies235

are specified, can be determined as

v = Φ−1
R · γR. (39)

Since Eq. (26) is not utilized by this design method, IIR multi-notch filters

designed using Method E do not necessarily satisfy magnitude response spec-

ifications regarding the maximum attenuation value in passbands. As vector

v, given by Eq. (39), is also a solution to the unconstrained optimization240

problem with Euclidean norm of the left-hand sides of Eq. (27) as objective

function, if Eq. (26) is satisfied by filter obtained using Method E, the same

12



filter is also obtained by Method C-R.

3) Method in [23] utilizes the fact that for any set of frequencies,

{ω̃k |ωr,k < ω̃k < ωl,k+1, 1 ≤ k ≤ K − 1}, where local maxima of the mag-245

nitude response occur, unknown coefficients can be determined such that

magnitude response specifications are satisfied, if geometric mean of multi-

notch filter pole radii is greater than some value. Although the method

proposed in [23] starts from the denominator expressed as a positive poly-

nomial of x = cos (ω) which is designed by a shape factor (which is uniquely250

determined by the geometric mean of the pole radii) and the local maxima

positions of the magnitude response, the computationally less intensive ap-

proach to the design of the same transfer functions as are those obtained

by [23] is discussed in the following text. Discussed approach is referred to

as Method F.255

Since at frequencies where local maxima of the magnitude response occur

one has that

sin
φ (ω̃k)

2
= 0, (40)

for k = 1, 2, . . . , K − 1, from Eq. (15) it follows that

Q (ω̃k) = 0, (41)

for k = 1, 2, . . . , K − 1, which in matrix notation reads

Φ̃ · ṽ = γ̃, (42)

where v is partitioned as260

v =

 v1

ṽ

 , (43)

while Φ̃ =
[
ϕ̃ki

]
and γ̃ = [γ̃k] are (K − 1)× (K − 1) matrix and (K − 1)× 1

column vector, respectively, with elements

ϕ̃ki = sin (iω̃k) ,

γ̃k = − sin (Kω̃k) .
(44)
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Therefore, vector ṽ can be determined from Eq. (42) as ṽ = Φ̃−1 · γ̃. On

the other hand, v1, if not given (which is the case when the maximization

of the area under the passbands squared magnitude response is considered265

in [23]), is determined such that geometric mean of multi-notch filter pole

radii is minimized for a given set of frequencies where local maxima of the

magnitude response occur,

v1 = max
k

λk, (45)

where

[λk]2K×1 =

 γL − Φ̃L · ṽ

γR − Φ̃R · ṽ

⊘

 ηL

ηR

 , (46)

which follows from Eqs. (26), (27) and (32), and operator ⊘ is the Hadamard270

division matrix operator.

Three heuristic options and two optimality criteria for selection of frequencies

ω̃k, 1 ≤ k ≤ K − 1, are proposed in [23]. Heuristic options are:

(a) Projection of averaged notch frequencies (PANF):

ω̃k =
ωn,k + ωn,k+1

2
.

For this selection, Method F is referred to as Method F-PANF.275

(b) Average of projected notch frequencies (APNF):

ω̃k = arccos
cosωn,k + cosωn,k+1

2
.

In this case, Method F is referred to as Method F-APNF.

(c) Local maxima positions (LMPN) of N (ω) =
K∏
i=1

(cosω − cosωn,i)
2
, ie.

ω̃k | N ′ (ω) = 0 .

In this case, Method F is referred to as Method F-LMPN.

On the other hand, optimality criteria considered in [23] are the minimization280

of geometric mean of multi-notch filter pole radii and the maximization of

the area under the passbands squared magnitude response for a given value
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of the geometric mean of the pole radii. The solutions when these optimality

criteria considered are obtained using the PSO algorithm in [23].

Note that proposed Method A also minimizes the geometric mean of the pole285

radii, while at the same time its computational complexity is considerably

lower compared to the existing design method in [23].

Furthermore, as the area under the passbands squared magnitude response

Ap =

∫
ω∈P

∣∣H (
ejω

)∣∣2 dω, (47)

by means of Eqs. (9) and (15) can be expressed as

Ap =

∫
ω∈P

cos2
φ (ω)

2
dω =

∫
ω∈P

[
1− Q2 (ω)

R2 (ω) +Q2 (ω)

]
dω, (48)

maximization of Ap subject to constraints given by Eqs. (26), (27) and (31),290

and specified value of the geometric mean of the pole radii, reduces to the

following minimization problem

minimize
ṽ

∫
ω∈P

[
sin(Kω)+s(ω)·ṽ

]2
dω[

sin(Kω)+s(ω)·ṽ
]2

+v2
1

[
cos(Kω)+c(ω)·u

]2
subject to:

 γL − ηL · v1
γR − ηR · v1

 ≤

 Φ̃L

Φ̃R

 ṽ ≤

 γL

γR

 , (49)

note Eqs. (16), (17), (43) and (32), where

s (ω) = [sinω sin (2ω) . . . sin ((K − 1)ω)] . (50)

Now, obtained optimization problem can be efficiently solved iteratively us-

ing the Steiglitz-McBride approach [21, 17]. In this way, lower computational295

complexity is achieved compared to the approach in [23] that utilize the PSO

algorithm. Previous optimization problem characterizes the design method

referred to as Method F-A.

4) Method in [27] utilizes notch and both left- and right-hand cutoff frequen-

cies as design constraints. However, as number of linear equality constraints300

derived from design constraints equals 3K, while number of unknown coeffi-

cients equals 2K, variable elimination is first performed to ensure that notch
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frequencies’ specifications are satisfied. Then, remaining overdetermined sys-

tem of linear equations is solved in the least-square sense.

Overdetermined system from [27] can be obtained by equating the left-hand305

sides of Eqs. (26) and (27) to zero, followed by multiplication by (1− p2K)

and substitution of Eqs. (43) and (32),

(γL + ηL) p2K + Φ̃L (1− p2K) ṽ = γL − ηL,

(γR + ηR) p2K + Φ̃R (1− p2K) ṽ = γR − ηR,
(51)

hence, the least-square solution reads p2K

(1− p2K) ṽ

 =

 γL + ηL Φ̃L

γR + ηR Φ̃R

†

·

 γL − ηL

γR − ηR

 , (52)

where † denotes Moore-Penrose inverse.

Previous equation defines the design method referred to as Method G.310

Minimum-order allpass-based IIR multi-notch filters designed using pro-

posed and existing methods are compared in terms of maximum pole radius,

ρmax, and the area under the passbands squared magnitude response, Ap. Three

sets of IIR multi-notch filter specifications are considered:

1. ωn,1 = 0.3π, ωn,2 = 0.5π, ∆ω1 = ∆ω2 = 0.1π, a = 2.2 dB315

2. ωn,1 = 0.2π, ωn,2 = 0.4π, ωn,3 = 0.7π, ∆ω1 = ∆ω2 = ∆ω3 = 0.1π,

a = 2 dB

3. ωn,1 = 0.1π, ωn,2 = 0.2π, ωn,3 = 0.4π, ωn,3 = 0.8π, ∆ω1 = ∆ω2 = 0.06π,

∆ω3 = ∆ω4 = 0.08π, a = 1.75 dB

ρmax, 4
√
p2K and Ap of IIR multi-notch filters obtained using all discussed320

methods, exceptMethod F-A, for all three specifications sets, are given in Tab. 1.

Passbands magnitude responses of IIR multi-notch filters designed using Meth-

ods A, B and D for the first specifications set, and Methods C-M and F-APNF

for the third specifications set are given in Figs. 1 and 2, respectively. As ge-

ometric means of pole radii obtained by utilization of Methods D and E are325

less than the values obtained when Method A utilized, note Tab. 1, specifica-

tions regarding the maximum attenuation value in passbands are not satisfied
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Figure 1: First specifications set: dashed, solid and dotted lines correspond to passbands

magnitude responses of filters obtained by Methods A, B and D, respectively.

when Methods D and E are utilized for all three specifications sets. For the

same reason, specifications are not met when Method G utilized for the first

two specifications sets, while it also shows that passbands magnitude response330

specifications are not satisfied for the third specifications set. This can be also

concluded from Fig. 1 for the filter obtained using Method D.

From Tab. 1 it can be observed that for the first two specification sets,

utilization of the Method B results in the highest Ap ( 4
√
p2K), while for the third

specifications set Method F-LMPN provides the highest Ap ( 4
√
p2K). Regarding335

the maximum pole radius, ρmax, the second best design methods (as utilization

of Method C-M yields the lowest ρmax) are Methods C-L, F-LMPN and A for

the first, second and third specifications sets, respectively. For considered design

methods, it can be also concluded that higher geometric mean of pole radii is not

necessarily followed by higher Ap. Furthermore, unless maximum pole radius340

is required to be minimized, performances of all methods are specifications-

specific. For example, Method B outperforms Method F-APNF both in terms

of stability margin (ρmax) and Ap for the second specifications set, while opposite

is true for the third specifications set.
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Table 1: Maximum pole radii, geometric mean of the pole radii and the areas under the

passbands magnitude responses of IIR multi-notch filters obtained using all discussed methods

except Method F-A.

1st specs. set 2nd specs. set 3rd specs. set

Method ρmax 4
√
p2K Ap ρmax 4

√
p2K Ap ρmax 4

√
p2K Ap

A 0.9020 0.8928 1.9912 0.8974 0.8397 1.6469 0.9440 0.8614 1.7586

B 0.9065 0.9015 2.0523 0.9213 0.8684 1.7764 0.9808 0.8851 1.8345

C-L 0.8985 0.8985 2.0322 0.9056 0.8497 1.6930 0.9839 0.8912 1.8390

C-R 0.9053 0.8941 1.9992 0.8972 0.8419 1.6566 0.9455 0.8619 1.7605

C-LR 0.9020 0.8928 1.9912 0.8971 0.8407 1.6513 0.9802 0.8866 1.8392

C-M 0.8984 0.8984 2.0319 0.8956 0.8476 1.6847 0.9404 0.8640 1.7744

D 0.8950 0.8676 1.8235 0.8924 0.8048 1.4860 0.9377 0.8212 1.5594

E 0.9098 0.8813 1.9020 0.8990 0.8299 1.5918 0.9492 0.8579 1.7310

F-PANF 0.9050 0.9009 2.0486 0.9199 0.8666 1.7690 0.9578 0.8826 1.8615

F-APNF 0.8989 0.8977 2.0268 0.9313 0.8676 1.7671 0.9638 0.8930 1.9044

F-LMPN 0.8989 0.8977 2.0268 0.8961 0.8455 1.6746 0.9496 0.8963 1.9330

G 0.8876 0.8846 1.9392 0.8886 0.8328 1.6156 0.9805 0.8855 1.8331
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Figure 2: Third specifications set: dashed and solid lines correspond to passbands magnitude

responses of filters obtained by Methods C-M and F-APNF, respectively.

Geometric means of pole radii that correspond to filters designed usingMeth-345

ods A, B, C-L, C-R, C-LR, C-M, F-PANF, F-APNF and F-LMPN are used
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Table 2: Method F-A: Maximum pole radii and the areas under the passbands magnitude

responses of IIR multi-notch filters for all three specifications sets and various values of the

geometric mean of the pole radii. Method* column indicates a method which utilization results

in the same geometric mean of pole radii.

1st specs. set 2nd specs. set 3rd specs. set

Method* 4
√
p2K ρmax Ap 4

√
p2K ρmax Ap 4

√
p2K ρmax Ap

A 0.8928 0.9020 1.9912 0.8397 0.8974 1.6469 0.8614 0.9440 1.7586

B 0.9015 0.9032 2.0527 0.8684 0.9105 1.7847 0.8851 0.9511 1.8852

C-L 0.8985 0.9002 2.0320 0.8497 0.8973 1.6946 0.8912 0.9539 1.9166

C-R 0.8941 0.9012 2.0013 0.8419 0.8969 1.6572 0.8619 0.9434 1.7617

C-LR 0.8928 0.9020 1.9912 0.8407 0.8972 1.6515 0.8866 0.9518 1.8932

C-M 0.8984 0.9002 2.0317 0.8476 0.8959 1.6847 0.8640 0.9413 1.7744

F-PANF 0.9009 0.9026 2.0488 0.8666 0.9092 1.7758 0.8826 0.9500 1.8723

F-APNF 0.8977 0.8995 2.0268 0.8676 0.9099 1.7809 0.8930 0.9547 1.9259

F-LMPN 0.8977 0.8995 2.0268 0.8455 0.8961 1.6746 0.8963 0.9561 1.9428

as a starting point for Method F-A, for all three specifications sets. ρmax, 4
√
p2K

and Ap of obtained filters are provided in Tab. 2. As in the first example, the

highest values for the Ap are obtained when geometric means of the pole radii

equal the values obtained by the utilization of the Method B for the first two350

specifications sets, and Method F-LMPN for the third specifications set. How-

ever, as opposed to the previously discussed design methods, higher geometric

mean of pole radii is followed by higher Ap, for all three considered specifications

sets, note Tab. 2. From Tabs. 1 and 2 it can be also concluded that if minimum

value of the geometric mean of pole radii is specified in Method F-A, obtained355

ρmax and Ap are the same as if Method A used, ie. the same transfer functions

are obtained. In other words, it seems that there are no two multi-notch filters

with minimum value of geometric mean of pole radii.

5. Conclusion

In this paper, comprehensive literature review of the minimum order IIR360

multi-notch filter design methods is first performed, and several allpass-based

design methods are derived such that various cost functions are minimized.
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Additionally, it is shown that IIR multi-notch filter transfer functions derived

using some of the existing design methods can be alternatively derived using

conclusions drawn and notations introduced in the paper, and as for design365

methods from [23], a lower computational complexity counterpart methods are

obtained.

Results of comparison with the existing design methods show that proposed

Method C-M outperforms existing methods in terms of stability margin. There-

fore, its utilization is preferred in all applications where IIR multi-notch filters370

are realized using finite wordlength. As of Method B, its utilization can result

in transfer functions having the highest area under the passbands magnitude

response as compared to transfer functions obtained by means of all methods

except Method F-A (since this method requires the geometric mean of pole radii

to be specified). Regarding the utilization of the Method F-A, higher specified375

geometric mean of pole radii is followed by the higher area under the passbands

magnitude response.
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[12] S. Nikolić, I. Krstić, G. Stančić, Noniterative design of IIR multiple-notch

filters with improved passband magnitude response, International Journal

21

https://doi.org/10.1007/s00034-012-9426-x
https://doi.org/10.1016/j.dsp.2013.01.006
https://doi.org/10.1109/ICASSP.2016.7472587
https://doi.org/10.1109/ICASSP.2016.7472587
https://doi.org/10.1109/ICASSP.2016.7472587
https://doi.org/10.1007/s00034-018-0841-5
https://doi.org/10.1007/s00034-018-0841-5
https://doi.org/10.1007/s00034-018-0841-5


of Circuit Theory and Applications 46 (12) (2018) 2561–2567. doi:10.

1002/cta.2525.

[13] P. A. Regalia, S. K. Mitra, P. Vaidyanathan, The digital all-pass filter: A420

versatile signal processing building block, Proceedings of the IEEE 76 (1)

(1988) 19–37.

[14] S. Pei, W. Lu, B. Guo, Pole–Zero Assignment of All-Pass-Based Notch

Filters, IEEE Transactions on Circuits and Systems II: Express Briefs 64 (4)

(2017) 477–481.425

[15] A. Thamrongmas, C. Charoenlarpnopparut, All-pass based IIR multiple
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