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An effective method for the design of the continuous-time all-pass
network for the low-pass filter group delay response equalisation
is presented in this Letter. Since the method is derived from the maxi-
mally flat conditions at the origin of the group delay response’s rational
function, the cascade connection of the designed all-pass network and
low-pass filter exhibits a constant group delay response at the origin in
the flat sense. Illustrative examples regarding group delay equalisation
of the Butterworth filters are given.
Introduction: A classical problem in the field of filter theory is the
design of filters having constant group delay in the passband and at
the same time steep magnitude selectivity. This problem can be often
divided into two separate subproblems. The first one deals with the
design of the filter with steep cut-off slope, which can be performed
by utilising one of the many well-known low-pass approximation tech-
niques. Since filter derived this way exhibits non-constant passband
group delay response, the approximation of the additional all-pass
equaliser is the second subproblem. Many researchers proposed differ-
ent methods for the group delay equalisation in continuous- and
discrete-time domain including, e.g. genetic algorithms based approach
[1], adaptive filters [2], all-pass-based equalisation techniques [3] and
the optimum equiripple delay frequency response method [4].

In this Letter, a novel approach to equalisation of the continuous-time
low-pass filter group delay response is presented. The equalisation of the
group delay response is carried out with the aid of the all-pass network,
cascade-connected to the low-pass filter structure. The proposed method
relies on a set of nonlinear equations, derived directly from the flatness
conditions of the equalised group delay response at the origin, to obtain
the unknown values of the all-pass network parameters.

Group delay equaliser design: Let us suppose that the group delay
equalisation of the nth degree low-pass filter Gn(s) is performed by cas-
cading it with an mth degree all-pass network Am(s), whose magnitude
response is equal to unity, but frequency varying phase response wA(v).
The transfer function of this cascade connection is H(s) = Gn(s)Am(s) or
at real frequencies s = jv

H(jv) = |Gn(jv)| ej[wG (v)+wA(v)], (1)

where wG(v) is the phase response of the low-pass filter.
Since the phase response of H(jv) equals to the sum of phase

responses wG(v) and wA(v), and the group delay is obtained as the nega-
tive derivative of the phase response, one has that

t(v) = tG(v)+ tA(v). (2)

The group delay tG(v) of the low-pass filter Gn(s) is an even, rational
function in v, which can be easily calculated by employing the follow-
ing formula:
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On the other hand, since the transfer function of the mth degree
all-pass filter Am(s) can be expressed as a cascade connection of the first-
degree all-pass section (in terms of the natural frequency s0) and
second-degree all-pass sections (in terms of the quality factors, Qi,
and corresponding natural frequencies, v0i), as follows:
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where m = 0 or 1 depending on the parity of m = 2k + m, its group
delay response is given by
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The group delay of the equalised filter t(v), obtained by putting (3) and
(5) into (2), is an even rational polynomial function in v

t(v) = b0 + b2v2 + b4v4 + · · · + b2(n+m−1)v
2(n+m−1)

a0 + a2v2 + a4v4 + · · · + a2(n+m)v2(n+m)
(6)
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with the coefficients being dependent on m all-pass network parameters.
Ideally, the group delay response of the whole filter, given by (6), is con-
stant in the maximally flat sense at the origin, i.e. its first 2(n+ m)− 1
derivatives with respect to the frequency equal to zero at v = 0. One
way to accomplish this is by equating the ratio of the numerator and
denominator coefficients multiplying the same powers of v, i.e.

b0/a0 = b2/a2 = · · · = b2(n+m−1)/a2(n+m−1). (7)

However, as there are only m unknown parameters for the all-pass
network design, only 2m+ 1 derivatives of the group delay response
given by (6) can be equal to zero. This results in m nonlinear equations
with m unknowns for the group delay equaliser design

b2i/a2i − b0/a0 = 0, for i = 1, 2, . . . , m. (8)

The Matlab Symbolic Toolbox can be used to solve the system of non-
linear equations (8) for the arbitrary degrees of both the low-pass filter
and the group delay equaliser (i.e. all-pass network Am(s)).

Design examples: The following examples illustrate the applicability of
the proposed design method when Butterworth filter group delay equal-
isation is of interest. This is primarily because Butterworth filters are
simple and commonly used in many analogue and digital signal proces-
sing applications. As the first example, the design of the third-degree
group delay equaliser (m = 3) for the fourth-degree Butterworth filter
(n = 4) is considered. Since the transfer function of the fourth-degree
Butterworth filter in a symbolic form is given by
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its group delay response, directly obtained by using (3), is written as
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First, four numerator and denominator polynomials’ coefficients of
the whole system’s group delay, in this case, see (6), are equal to
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where h = ��
2

√ �����������
2

√ + 2
√

and p = ��
2

√ − 1, and

a0 = Q2
1s

2
0, a2 = Q2

1 − s2
0(2Q

2
1 − 1)/v2

01,

a6 = Q2
1/v

4
01, a4 = Q2

1s
2
0/v

4
01 − (2Q2

1 − 1)/v2
01.

(12)

Substituting (11) and (12) into (8), the following system of three
nonlinear equations in the unknown biquad parameters Q1, v01 and
s0 is obtained
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After taking into consideration the stability and filter realisability con-

ditions, the following solution is obtained: s0 = 0.926892764227045,
v01 = 0.999015631828311 and Q1 = 0.625709073062524.

Note that by putting s0 = 0 into (11) and (12), the coefficients a0 and
b0 are equal to zero, while the remaining coefficients b2i and a2i,
i = 1, 2, 3, can be used to design the second degree equaliser for the
fourth degree Butterworth filter. The obtained system of two nonlinear
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equations yields the following solution: Q1 = 0.543397844468906 and
v01 = 1.095461766679881.

To illustrate this point, the group delay responses of the fourth-degree
Butterworth filter and group delay-equalised Butterworth filters using
second- and third-degree equalisers are shown in Fig. 1 left. Step
responses of standard and group delay-equalised Butterworth filters
are given in Fig. 1 right.
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Fig. 1 Group delay (left) and step (right) responses of fourth-degree
Butterworth filter and group delay-equalised Butterworth filters using
second- and third-degree delay equalisers

As the second example, we investigated the group delay equalisation
of the ninth-degree Butterworth filter using all-pass networks of degrees
m from 2 to 9, obtained by utilising the proposed design method,
all-pass networks containing one to five sections. The obtained quality
factors, Qi, and natural frequencies, v0i, i = 1, 2, , ⌊m/2⌋, for the
biquad all-pass sections, and s0 of the first-degree all-pass sections,
are given in Table 1.

Table 1: Particular parameters of biquads and first-degree all-pass
sections of eight (m from 2 to 9) group delay equalisers
(4) for ninth-degree Butterworth filter (if m is odd, s0 is
denoted as v0k , k = ⌈m/2⌉)
m
 k i
 v0i
E

Qi
LECTRONICS
1 %
2
 1 1
 0.963504009246829
 0.536093703423734
 14.7990570
3
 2

1
 0.961269337258971
 0.597915259429409
10.9110899

2
 0.897792816808062
4
 2

1
 0.879996020982890
 0.513953729797196
8.1434736

2
 0.964843302377879
 0.665706871333869
5
 3
1
 0.968656230697964
 0.735283145515162
6.0891471
2
 0.875664576954717
 0.542473192954504
3
 0.850018973542872
6
 3
1
 0.875610453463972
 0.576924014652245
4.5435171
2
 0.971320993549263
 0.805552707887652
3
 0.837223073153313
 0.507478285063141
7
 4
1
 0.876405983124492
 0.614331569298990
3.3695216

2
 0.831064915424474
 0.524227879329719
3
 0.972407847023535
 0.876570380360233
4
 0.817328398835526
8
 4
1
 0.825962928941935
 0.545982239794787
2.3939571

2
 0.803869831410650
 0.504714507264969
3
 0.875615282405391
 0.654107415504115
4
 0.971244143212340
 0.950242528667801
9
 5
1
 0.968602955311104
 1.023263519925962
1.6383289
2
 0.798115157758117
 0.515656364482048
3
 0.824025442287063
 0.569709959406258
4
 0.874703878417463
 0.693531488271415
5
 0.790140705279375
The maximum group delay relative errors of the equalised
Butterworth filters,

1 = (tmax − tmin)/(tmax + tmin)× 100 %, are also given in the last
column of Table 1.
LETTERS 13th D
The group delay responses of the equalised Butterworth filter for
n = 9 with one up to five all-pass sections, whose biquad parameters
are given in Table 1, are plotted in Fig. 2.
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Fig. 2 Group delay equalisation of a ninth-degree Butterworth filter; from
bottom to top: original response and equalised responses using one to five
all-pass sections

Conclusion: In this Letter, a new design method for the group delay
equalisers for the continuous-time filters is proposed. Unknown
parameters characterising equaliser are obtained by solving a system
of nonlinear equations, derived directly from the filter’s group delay
response flatness conditions at the origin. The obtained equalised filter
exhibits a constant group delay response in the maximally flat sense
at the origin, while the number of flatness can be arbitrarily specified
by the degree of the group delay equaliser, i.e. the all-pass network.
Finally, the proposed method can be extended towards the design of
the group delay equalisers for other types of filters: both continuous-
and discrete-time ones.

The proposed design method is suitable to be used for designing the
group delay equalisers needed in applications such as impulse radio
ultra-wideband wireless receivers, where exist necessity for the group
delay response exhibiting maximally flat behaviour [5].
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