SOME CHARACTERISTICS OF HEAT PRODUCTION BY STATIONARY PARABOLIC, CYLINDRICAL SOLAR CONCENTRATOR

Milorad Bojić1, Nenad Marjanović1, Ivan Miletić1, Aleksandar Mitić1, Velimir Stefanović2
1Faculty of Mechanical Engineering at Kragujevac, University of Kragujevac
Sestre Janjić 6, 34000 Kragujevac, Serbia
Email: bojic@kg.ac.yu
2Faculty of Mechanical Engineering, University of Nis
Aleksandra Medvedeva 14, 18000 Nis, Serbia

ABSTRACT
Stationary parabolic, cylindrical solar concentrator for heat production consists of the absorber (with water pipes) and parabolic, cylindrical reflector (with metal surface) and has geometrical concentration ratio up to 4. For the concentrator of CP-0A type with infinite length, the paper presents investigation how direct solar radiation approaches the concentrator aperture and the concentrator reflector by computer software CATIA. The solar ray either hits directly absorber or bounces one or several time from the concentrator reflector. In addition the paper would present results of efficiency of use of light rays at concentrator as a function of angles of incident of solar rays and type of reflector surface.

KEY WORDS
Solar energy, Concentrator, Reflector

1. Introduction
Temperature increase has been constantly recorded on the global level. The increase is due to green-house effect because of CO2 emission from different sources in atmosphere. Usually this emission is blamed to combustion of fossil fuels mainly for heating and electricity production. A response to such a situation may be increased use of solar energy for heating, cooling, and electricity production. Solar energy is source of all life on the earth and it is in abundance but dispersed. Here, we propose use of stationary, asymmetric solar concentrator for conversion of solar energy to heat.

The subject of this research (in Centre of heating, air conditioning and solar energy of Mechanical Engineering Faculty at Kragujevac in Kragujevac University in Serbia) is design optimization of stationary asymmetric solar concentrator of CP-0A type for heat and electricity production with geometric concentration of up to 4.

The stationary solar concentrators have advantages over tracking concentrators as they can be part of building façade and used in building and city architecture.

The conventional solar collectors only use half of their available surface area. The bottom half of the collector faces downward and is in contact with opaque insulation. The heat-transfer fluid within a panel is easily able to accept more energy than is incident on the top surface of a conventional panel. Then, illumination of both sides of the collector with non-imaging reflectors is performed. This allows a single absorber to be used instead of the two standard single-sided absorbers. This represents a substantial cost and materials saving.

Concentrators of similar and the same type were already subject of intensive research [1-5]. This paper investigates how at different angles, direct solar radiation approaches the concentrator aperture and pathways of this radiation inside the concentrator by computer software CATIA. In addition the paper would present results of the efficiency of use of light rays at the concentrator as a
function of angles of incident of solar rays for different types of reflector surface. The concentrator length is infinite meaning that side radiation losses are not studied.

Figure 2. Vertical cut through the concentrator in the plane perpendicular to the direction east-west

2. Concentrator Design

2.1 Design description

A stationary asymmetric solar concentrator of CP-0A type shown in Fig.1 consists of a reflector and absorber. The reflector has partially parabolic and partially cylindrical shape. The reflector is covered with different materials that have good reflectivity. The absorber has plate shape. This is basically aluminum painted black. Inside the absorber, there are copper pipes where the heat transfer fluid flows. In this figure, L stands for the concentrator length, and y for the width of the concentrator aperture. The concentrator length L is assumed to be infinite or to be significantly larger than that of y.

Figure 3. Light ray path toward the concentrator that hits the absorber directly (the cross cut of parabolic-cylindric concentrator).

The concentrator operates as the following. The direct solar radiation falls on the different parts of the reflector surface. The reflector surface reflects the solar radiation toward the absorber. All reflected solar radiation hits and concentrates to the absorber. In the absorber, the concentrated solar radiation is transformed into heat. The heat is collected by the heat transfer fluid and directed to the storage tank.

2.2 Concentrator position

The position of the concentrator is shown in Figs.1 and 2. Figure 2 shows the vertical cut of the concentrator in Fig.1. The concentrator is positioned to have the reflector trough in the direction east-west, while the reflector surface faces south (valid for the north hemisphere). In Fig.2, three angles are defined such as \(\varphi \), \(\beta_1 \), and \(\delta \). Angle \(\varphi \) represents the latitude, angle \(\beta_1 \) represents the vertical location angle of the concentrator absorber, and angle \(\beta \) the vertical location angle of the solar ray, and angle \(\delta \) stands for the aperture angle of the concentrator. The figure reveals that \(\beta_1 \) is the angle between absorber and horizontal direction due south. This angle is calculated as

\[
\beta_1 = 113.75^\circ - \varphi. \tag{1}
\]

Also, this figure reveals that \(\beta \) is the angle between the solar ray and horizontal direction due south.

2.4 Light ray paths

Figure 3-6 shows the light ray paths toward the absorber of the concentrator obtained by computer software CATIA. In these figures, we show the travel path of several light rays. Basically, light rays may hit the absorber from the front side (Fig.3), from the back side, and may miss the absorber. In Fig.4, the light rays hit absorber after single hit to the reflector. In Fig. 5, the light
rays hit absorber after two hits to the reflector. In Fig. 6, the light rays hit absorber after 5 hits to the reflector.

![Figure 6. Light ray path toward the concentrator with 5 reflections (the cross cut of parabolic-cylindric concentrator)](image)

2.5 Efficiency

The efficiency of transfer of solar energy to concentrator absorber is given by the following expression

\[e = \left(A_0 + a A_1 + a^2 A_2 + a^3 A_3 + a^4 A_4 \right) / A \]

Here \(A = A_0 + A_1 + A_2 + A_3 + A_4 \), \(A \) is total area of the concentrator aperture, \(A_0 \) is area of aperture surface where the light enters that hits absorber without any reflection from reflector, \(A_1 \) is area of entrance aperture surface for light that hits absorber with one reflection from reflector, \(A_2 \) is area of entrance aperture surface for light that hits absorber with two reflections from reflector, \(A_3 \) is area of entrance aperture surface for light that hits absorber with three reflections from reflector, \(A_4 \) is area of entrance aperture surface for light that hits absorber with four reflections from reflector, \(a \) is light reflectivity from the surface of the reflector.

3. Results and discussion

3.1 Number of reflections

Figure 5 shows percentage values of the aperture area as a function of angles \(\beta \) of incident of solar rays. The aperture area was given in percents of the total aperture area of concentrator. These angles were varied from \(\beta = 21.75^\circ \) to \(69.75^\circ \). These curves are provided for different types of light rays that hit absorber surface: Aluminum foil, polished chrom, polished iron, heavily oxidized aluminum.

Regarding the type of light ray, the highest efficiency is that of the light rays that hit reflector having aluminum foil surface. Regarding the angle of solar ray incidence, the highest efficiency is that for angles from \(55^\circ \) to \(69.75^\circ \). This efficiency is up to 10% greater than that for angles of \(22^\circ \) to \(52^\circ \).

![Figure 7. Aperture area as a function of inlet angle of solar ray](image)

3.2 Efficiency of concentrator

Figure 6 shows efficiency of use of light rays at concentrator as a function of angles of incident of solar rays. These angles were varied from \(\beta = 21.75^\circ \) to \(69.75^\circ \). These curves are provided for different types of reflector surfaces: Aluminum foil, polished chrom, polished iron, heavily oxidized aluminum.

Regarding the type of reflector surface, the highest efficiency is that of the light rays that hit reflector having aluminum foil surface. Regarding the angle of solar ray incidence, the highest efficiency is that for angles from \(55^\circ \) to \(69.75^\circ \). This efficiency is up to 10% greater than that for angles of \(22^\circ \) to \(52^\circ \).
4. Conclusion

Temperature increase due to green-house CO2 emission from different fossil sources is recorded in atmosphere. World community tries to respond to such a situation by increased use of solar energy for heating, cooling, and electricity production.

In this paper, we present the investigations of the solar concentrator that uses solar energy to generate heat of CP-0A type. The concentrator is stationary trough, and has parabolic-cylindrical reflector surface. The concentrator length is assumed to be infinite meaning that side radiation losses are not studied. Its geometrical concentration depends on the concentrator aperture angle and type of energy production and is between 1.8 and 36. By using CATIA software, we investigate propagation of light rays inside the concentrator to reach the absorber surface. We found that light rays may hit absorber surface without reflection from the reflector, with one reflection from the reflector, with two reflections from the reflector, with three reflections from the reflector, and with more than three reflections from the reflector. We found that the highest percentage of aperture is that of the light rays that hit absorber with one reflection from reflector for the incident angles from 52° to 69.75°. For angles from around 22° to 52°, the highest percentage of aperture is that of the light rays that hit absorber with two reflections from the reflector with maximum value of around 78% for $\beta=44°$.

By using previous results, we calculate efficiency of use of light rays at concentrator as a function of angles of incident of solar rays. Regarding the type of reflector surface, the highest efficiency is that of the light rays that hit reflector with aluminum foil. Regarding the angle of solar ray incidence, the highest efficiency is that for angles from 55° to 69.75°. This efficiency is up to 10% greater than that for angles of 22° to 52°.

Acknowledgement

This paper is a result of project 27003. This project is financed by Ministry for Science of Republic of Serbia. We are grateful for their financial support.

References