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Abstract – This paper outlines the basic concepts for 
compensation of arbitrary immeasurable periodical 
external disturbances and/or for the accurate tracking of 
periodical reference signal without error in the steady-
state. The conventional method based upon the application 
of IMP (Internal Model Principle) is first described briefly 
and then the more efficient IMPACT (Internal Model 
Principle and Control Together) controlling structure is 
proposed, which completely rejects effects of any 
periodical disturbance on the steady-state value of 
controlled variable (system output). Besides the efficient 
extraction of periodical disturbances, the IMPACT 
structure enables achievement the higher degree of system 
robustness. The structure design is illustrated by the 
extraction of periodical load torque disturbance in a 
speed-controlled electrical drive with DC motor. 
 
Keywords – Internal model principle, IMPACT controlling  
structure, Extraction of disturbance, System robustness. 
 
1. INTRODUCTION 
 
 The concept “Repetitive Control Systems (RCS)” is 
related to the special class of feedback control system with 
control algorithms that are able to extract the influence of any 
external periodical disturbance on the steady-state value of 
system output and/or to track the periodical reference signal 
without the error in the steady state [1,2]. Such kind of 
disturbances are met in many engineering applications. For 
example, in speed- and position-controlled electrical drives, 
periodical torque disturbances may appear with the frequency 
of motor rotation. Unbalances that appear in rotation machines 
produce also periodical torque disturbances on the frequency 
of rotation of moving parts of machine. The frequency of 
energy source may also produce periodical disturbances. [1]. 

Different methods for compensation of periodical 
disturbance have been developed for continuous and digital 
control systems [1-5]. Some of these methods were developed 
for compensation of sinusoidal disturbances and they can be 
easily extended for multiple sinusoidal disturbances and 
consequently for compensation of any kind of periodical 
disturbances. The bandwidth of almost all physical systems lie 
in a low-frequency band and therefore only certain number of 
first harmonics of periodical signal should be considered and  
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considered and compensate. According to [2], there are two 
main approaches to compensation of periodical disturbances. 
In the first approach called AFC (Adaptive Feedforward 
Control), the sinusoidal disturbance is suppressed by applying 
the additional inverse sinusoidal signal at the input of control 
plant. In doing so, the amplitude and phase of disturbance are 
estimated adaptively. The second approach is based upon the 
application of IMP (Internal Model Principle) or principle of 
absorption.  

In this paper, the concept of conventional RCS systems 
based on the application of IMP is explained first. The new 
internal model of sinusoidal disturbance is proposed and 
tested. By introducing this model into the control portion of 
the system, the extraction of disturbance from the steady-state 
value of system output is achieved after a relatively short time 
of transient response. Particular attention is paid to the 
IMPACT controlling structure designed for digitally-
controlled electrical drive subjected by an external periodical 
load torque disturbance. It is shown that the proposed 
IMPACT structure is very efficient in disturbance extraction 
and in achieving a high level of system robustness 
 
2. PRINCIPLE OF ABSORPTION AND INTERNAL 

MODEL PRINCIPLE (IMP) 
 
 If the disturbance can be modeled by the function 
representing the solution of homogenous differential or 
difference equation of given order, then it is possible, in a 
simple and obvious way, to modify the control part of the 
system so to eliminate the influence of external disturbance on 
the steady-state value of system output. The homogenous 
differential or difference equation represents the internal 
model of disturbance and the method of control structure 
modification actually means the application of the IMP 
(Internal Model Principle). Thus the principle become an 
important contribution to the synthesis of feedback control 
systems [6] long time after Kulebakin’s seminal works that 
founded the theory of selective invariance [7, 8]. 

 Essential differences between the principle of absorption 
and IMP don’t exist and their application in solving regulation 
problems do not require rather complicated algebraic 
manipulations. Note that the use of absorption principle 
enables the rejection of deterministic disturbances or 
substantial suppression of stochastic disturbances from the 
system output, in the steady-state. According to the principle 
of absorption, the model of disturbance should be imbedded 
into the control algorithm. This is performed by including the 
corresponding absorption filter into the control portion of the 
system; at the input of absorption filter is then excited by the 
signal of disturbance.  
 Consider the synthesis of absorption filter or prediction 
polynomial for compensation of effects of disturbance  f(t) in 



digital control systems. Suppose that the disturbance is 
regular. It means that the sample f kT D z f k T( ) ( ) (( ) )= −−1 1 can be determined 
by a final number  mo of previous samples. In that case, 

f kT D z f k T( ) ( ) (( ) )= −−1 1  (1) 
where D z( )−1  is the prediction polynomial of mo-1 order. 
Relation (1) is called the equation of extrapolation or 
prediction [9]. Now, the absorption condition for a known 
class of disturbances may be expressed by the compensation 
equation 

Φ Φ( ) ( ) , (deg )z F z t kT T− − = = ≥1 1 0  (2) 
where 

Φ ( ) ( )z z D z− − −= −1 1 11  (3) 
represents the compensation polynomial or absorption filter, 
and F z( )−1  is z-transform of disturbance. With a sufficient 
apriori information about the disturbance, prediction 
polynomial D z( )−1  is simply determined by the model of 
disturbance in the time domain. However, in more 
complicated cases, it might be difficult to adopt the 
appropriate model of disturbance and thus the selection of 
corresponding absorption filter becomes more difficult. It is 
shown in [1] that for deterministic disturbance the absorption 
polynomial is obtained as  

Φ ( ) ( ), ( )
( )
( )

z F z F z
F z
F zden
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den

− − −
−

−= =1 1 1
1

1 . (4) 

If the apriori information about the disturbance is 
insufficient, one may use the adaptive approach which enables 
the estimation of class of disturbances [10]. Moreover, in the 
case of stochastic disturbances, it is possible to synthesized 
the adequate absorption filter. For example, a low-frequency 
stochastic disturbance that can be simulated by double 
integration of white noise will be efficiently absorbed by 
absorption filter Φ(z-1)=(1- z-1)2 which, according to (4),  
corresponds to the absorption of linear (ramp) disturbance.  
 
3.  RCS SYSTEMS BASED UPON IMP 
 
 The RCS’s represent the special class of control systems 
based upon the application of absorption principle. Namely, 
controlling structures with periodic disturbances (RCS) may 
be considered as special cases of systems having the internal 
model of disturbance. The practical implementation of 
absorption principle consists in the introduction of absorption 
filter into control part of the structure in order to compensate 
the given class of disturbance. In the case of RCS systems, the 
important assumption is that the period of periodic 
disturbance is constant and unchanged during the time. The 
successful application of absorption principle depends of the 
quality (or accuracy) of the used model of disturbance and of 
the way of absorption filter implementation into the structure 
of control system. Generally, this implementation is the 
problem of structural synthesis which is not so far solved 
definitely. If the internal model of disturbance is included into 
the direct path of controlling structure, then the problem of 
system stability and tracking accuracy appears [1]. 

 
Fig.1. Digital control system 

In the digital control system of Fig.1, W zr ( )−1  
represents the pulse transfer function of controller and 
Q z( )−1 , P zu ( )−1  and P zf ( )−1  are polynomials in complex 

variable z−1 ( Q Pf( ) ( )0 0 1= = , Pu ( )0 0≠ ), which describe the 

control plant; r and f  denote reference signal and 
disturbance, respectively. According to the principle of 
absorption, if one uses the controller transfer function 
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then the adequate absorption polynomial Φr z( )−1  will ensure 
the zero steady-state error. When dynamics of reference signal 
and disturbance are quite different, it is necessary to 
determine two adequate polynomials Φr z( )−1  and 

Φ f z( )−1  for the absorption of error in tracking the reference 

signal  and for rejection of disturbance from the steady-state 
value of system output, respectively. Then the absorption 
polynomialΦr z( )−1  in (5) should be   

B z B z z B z z zf r( ) ( ) ( ) ( ) ( ) ( )− − − − − −= =1
1

1 1
1

1 1 1Φ Φ Φ . (6) 
For periodical disturbances, one must adopt the 

appropriate absorption polynomial 
Φ ( )z z N− −= −1 1  (7) 

where N is the number of sampling periods that are contained 
within the period of disturbance. Frequently, zeros of 
polynomial Φr z( )−1  are located on the unit circle of the z- 
plane; for example, in the case of Φ(z-1)=1- z-1 and Φ(z-1)=(1- 
z-1)2  that correspond to constant and ramp disturbances, 
respectively. Therefore, one must take care that polynomials 

1( )S z−  and Φr z( )−1  should be mutually simple; otherwise, 
common zeros of these polynomials will become the poles of 
open-loop system transfer function and consequently it may 
imperil the system stability. Polynomials S z( )−1  and B z1

1( )−  
in (5) are obtained as a solution of the Diophantine equation   

Q z z B z z P z S z K zk
u de( ) ( ) ( ) ( ) ( ) ( )− − − − − − − −+ =1 1

1
1 1 1 1 1Φ  (8) 

where )( 1−zKde  represents the desired system characteristic 
polynomial. The outlined design procedure should enable the 
accurate regulation or tracking in the steady-state and a high 
quality of system transient response. It should be noted that, 
for greater values of N in (7), the solution of equation (8) 
might become rather difficult and the obtained 
polynomialS z( )−1  may be of very high order. While the 
implementation of absorption polynomial Φ(z-1)=1- z-N  within 
the controller is not critical, a very high order of polynomial 



S z( )−1  may produce problems in achieving the real time 
operation of the  controller. As aforementioned, the internal 
model 1-z-N includes N characteristic roots on the unit circle 
representing the stability boundary for discrete time control 
systems. These roots make system highly sensitive to 
unmodeled dynamic. The stability problem and extension of 
robust stability of RCS systems are solved with the 
modification of internal model by moving the characteristic 
roots into the unit circle. The modification is given by    

Φ ( ) ( )z q z z N− − −= −1 11 , q e j( ) ,− ≤ ∀ ≥ω ω1 0 (9) 
After modification (9), the compensation of given class 

of periodical disturbances may be performed only 
approximately. Thus, there is the disagreement between the 
exact compensation of periodic disturbance and robust system 
performance. For the sake of brevity, the design procedure of 
low-frequency q(z-1) will not be given here. Instead of that, 
using the idea in [11], we propose the new synthesis of 
absorption filter for special class of periodic disturbances that 
may be odd or even function of time.  The filter is given by 

Φ ( )z z N− −= −1 1  (10) 
and it has twice shorter duration of transient response than the 
conventional absorption filter (7). 
 
4.  APPLICATION OF IMPACT STRUCTURE IN   
     DESIGN OF RCS SYSTEMS  
 
 Fig.2 shows the special case of IMPACT controlling 
structure that corresponds to control plants without the 
transport lag.(dead time). Thus the structure may be 
conveniently applied for digitally controlled electrical drives 
[1]. In that case, signal wM  modeled the influence of load 
torque disturbance on system output y  which may be shaft 
speed or angular position depending on the type of 
servomechanism.  

 
Fig. 2. IMPACT structure of digital control system  

The control portion of the system of Fig.2 is given by 
polynomials in complex variable z−1 . In the IMPACT 
structure, the control plant )(sWou  is given by its simplified 
nominal discrete model  
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developed at the low-frequency band. This model is included 
into the control part of the IMPACT structure as a two-input    
internal plant model. Signal ε  estimates effects of 
generalized external disturbance and uncertainness of nominal 
plant model on the system output. Uncertainness of nominal 

plant model can be adequately described by the multiplicative 
boundary of  uncertainness  )(ωα  

W z W z W zo( ) ( )( ( ))− − −= +1 1 11 δ  
δ α ω ω πωW e Tj T( ) ( ), ,− ≤ ∈ [ ]0  

(11) 

 Then the system in Fig. 2 satisfies the condition of 
robust stability if the nominal system is stable and if the 
following inequality is fulfilled  
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 The robust performance is achieved  by the local minor 
loop of the system in Fig. 2. Namely, the main role of this 
loop is  suppression of effects of the generalized disturbance 
on the system output. This loop comprises internal model of 
disturbance implicitly and two-input nominal plant model 
determined by polynomials z P zu

o− −1 1( )  and Q zo ( )−1 , 
explicitly. In the case of a control plant without the dead time, 
the internal model of disturbance is reduced to the prediction 
polynomial )( 1−zD . The choice of this polynomial affects the 
robust performance of the system and effectiveness in 
absorption of the given class of disturbance. For example, for 
constant and ramp disturbances, the proper choice of 
prediction polynomials are 1)( 1 =−zD  and 11 2)( −− −= zzD , 
respectively. In the case of a periodic disturbance having 
period NT, where T is the sampling period of digital control 
system, the prediction polynomial is   

( )11)( −−− = NzzD . (12) 

 For a complex disturbance that can be represented by 
the superposition of two disturbances having prediction 
polynomials 1

1( )D z−  and 1
2 ( )D z− , the resulting prediction 

polynomial becomes 

)()()()()( 1
2

1
1

11
2

1
1

1 −−−−−− −+= zDzDzzDzDzD . (13) 

 According to the standard procedure of IMPACT 
structure synthesis, for a minimum phase control plant, 
polynomial 1( )R z−   should be taken on as 

)()( 11 −− = zPzR o
u  (14) 

The polynomials P zr ( )−1  and P zy ( )−1  in the main 
external loop of the controlling structure in Fig. 2 determine 
the dynamic behavior of closed-loop system and these 
polynomials are determined independently from the design of 
local inner control loop of the structure. The desired pole 
spectrum of the closed-loop control system may be specified 
by the relative damping coefficient ς  and undamped natural 
frequency ωn  of the system dominant poles. In doing so and 
taking into account the required zero steady-state error for 
step reference signal, the desired second order discrete closed-
loop system transfer function becomes  

G z
z z z z z

z z z z z zde ( )
( ( ) )
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where  

 z e s js T

n n1 2 1 2

21 2 1/ /
/ ,= = − ± −ςω ω ς  (15) 

Then polynomials P zr ( )−1  and P zy ( )−1  are calculated 
in a straightforward manner from  
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 It should be noted that the choice of dominant poles or 
ς  and ωn  determines the quality of system set-point transient 

response but it also affects the system robustness and filtering 
capability. Here we will not consider possible modifications 
of the structure in Fig. 2 in order to minimize the 
contamination of the system due to measuring noise; our 
attention is focused only on the design of IMPACT structure 
in accordance with requirements of RCS systems. 
 
5. ILLUSTRATIVE EXAMPLE  
 

The design of IMPACT structure will be illustrated by 
the synthesis of digitally-controlled speed servomechanism 
with the DC motor. The robot motor U12M4T having transfer 
function )1()( += sTKsW mou  with K=4.38 and Tm=0.32s is 
adopted. To illustrate the capability and efficiency of the 
IMPACT structure in rejection of any kind of periodical 
disturbance, the elimination of the even trapezoidal external 
disturbance shown in Fig. 3 is required. 
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Fig. 3. Trapezoidal torque disturbance 

 
The desired closed-loop system transfer function is 

specified by its dominant poles having ζ=1 and ωn=2.5 rad/s 
inside the primary strip of the s-plane. With the sampling 
period T=0.1s the desired closed-loop system transfer function 
becomes  

G z
z

z zde ( )
. .
. .

=
−

− +
0312898 0259182
1687103 07408182  

 The nominal model of the control plant is given by its 
discrete transfer function 

0 1 1 4.38( )
0.32 1

sTzW z Z
s s
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which, for 0.1T = , becomes 
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and thus 
0 1

0 1 1
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( ) 1 0.731616
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 Since the control plant is without the dead time, 
1 0 1( ) ( ) 1.175524uR z P z− −= = . The other two 

polynomials 1( )rP z−  and 1( )yP z−  within the control part of 
the structure in Fig. 2 are obtained directly from (15) and (16) 
as 

1

1 1

( ) 0.048929

( ) 0.825986 0.606531
r

y

P z
P z z

−

− −

=

= − +
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 With calculated 1( )R z− , 1( )rP z− , and 1( )yP z−  the 
desired quality of the set-point transient response is 
completed. 
 The period of disturbance in Fig. 2 of 2 seconds 
contains 20 sampling periods of T = 0.1s and thus N = 20. 
Hence, the absorption filter that corresponds to absorption of 
periodical disturbance is 1 1 1

1 1( ) 1 ( ) 1 Nz z D z z− − − −Φ = − = − , 
wherefrom one obtains the corresponding prediction 
polynomial 1 ( 1) 19

1( ) ND z z z− − − −= = . 
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 Fig. 4. Step response of the speed servomechanism and  
rejection of trapezoidal disturbance with prediction 
polynomial 1 19

1( )D z z− −=  (trace 1) and prediction 

polynomial 1 1
2 ( ) 2D z z− −= −  (trace 2) 

 
Trace 2 in Fig. 4 illustrates the absorption of disturbance 

in Fig. 3 when the prediction polynomial 1 1
2 ( ) 2D z z− −= −  

that corresponds to the absorption of ramp (linear) 
disturbances is applied within the local loop of the IMPACT 
structure of Fig. 2. 

The best result of disturbance rejection is achieved if 
one applies the combined absorption filter 

1 1 1
1 2( ) ( ) ( )z z z− − −Φ =Φ Φ , where 1 20

1( ) 1z z− −Φ = −  and 
1 1 2

2 ( ) (1 )z z− −Φ = −  are absorption filters that correspond to 
absorption of periodical and ramp disturbances, respectively. 



Thus the combined absorption polynomial 1( )D z−  is derived 
from  

1 1 1 1 1 1
1 21 ( ) (1 ( ))(1 ( ))z D z z D z z D z− − − − − −− = − −  

as 
1 1 1 1 1 1

1 2 1 2( ) ( ) ( ) ( ) ( )D z D z D z z D z D z− − − − − −= + −  
19 1 18 12 (2 )z z z z− − − −= + − − − . 

 The step set-point response and absorption of 
disturbance by the combined absorption polynomial are 
shown in Fig. 5. 
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 Fig. 5. Set point transient response and absorption of 
disturbance by the combined absorption polynomial  

1 1 1 1 1 1
1 2 1 2( ) ( ) ( ) ( ) ( )D z D z D z z D z D z− − − − − −= + −  

(T = 0.1s) 

 The efficiency of disturbance rejection is greatly 
depends upon the choice of sampling period T. Let us assume 
the same aperiodical step set-point response that corresponds 
to dominant closed-loop poles having ζ = 1 and ωn=2.5 
rad/s and T = 0.02s. Then, one calculates 

1 0 1( ) ( ) 0.265371uR z P z− −= =  

0 1

0 1 1
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Fig. 6 shows the set-point response and illustrates the 
rejection of disturbance by the combined absorption 
polynomial 1 1 1 1 1

1 2 1 2( ) ( ) ( ) ( )D z D z z D z D z− − − − −+ −  in 

which now 1 99
1( )D z z− −=  while 1 1

2 ( ) 2D z z− −= −  stayed 
unchanged. 

By comparing Figs. 5 and 6 one can conclude that the 
smaller sampling period significantly improved the capability 
of IMPACT structure in suppressing periodical external 
disturbances. 

It is interesting to observe what would be happened if 
one applies, instead of combined absorption polynomial, the 

absorption polynomials 1
1( )D z−  and 1

2 ( )D z−  separately. 
Fig. 7 shows the set-point response and illustrates the 
extraction of disturbance when absorption polynomial 

1 99
1( )D z z− −=  that corresponds to the periodical disturbance 

is applied. The set-point response and rejection of periodical 
disturbance of Fig. 3 are illustrated in Fig. 8 when absorption 
polynomial 1 1

2 ( ) 2D z z− −= −  corresponding to a ramp 
disturbances is employed. Comparing the traces of Figs. 6, 7, 
and 8, one can conclude that the most efficient suppression of 
disturbance is achieved by a construction of suitable 
combined prediction polynomial. 
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Fig. 6 Set point transient response and absorption of 
disturbance by the combined absorption polynomial 

            1 1 1 1 1 1
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(T = 0.02s) 
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Fig. 7. Set point transient response and absorption of 
disturbance by absorption polynomial 

1 99
1( )    ( 0.02 )D z z T s− −= =  
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Fig. 8. Set point transient response and absorption of 
disturbance by absorption polynomial 

1 1
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6. CONCLUSION 
 

It has been shown that the application of IMPACT 
controlling structure in the design of RCS systems reveals 
advantages when compared with other methods based upon 
the application of internal model principle. Namely, in the 
application of IMPACT structure it is not necessary to make 
compromise between the system robustness and speed of 
disturbance extraction. Furthermore, the IMPACT structure 
enables the extraction of periodical disturbance completely. 
Moreover, the nominal characteristic polynomial of IMPACT 
structure does not depend on the internal model of 
disturbance. Hence, in the application of the structure for the 
design of RCS systems difficulties connected with the solving 
of the Diophantine equation (8) are avoided. 
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