

Basic use of CTL middleware in PAK software

Nenad Busarac1, Vladimir Dunić1, Miroslav Živković1, Radovan Slavković1
1Faculty of mechanical engineering, Kragujevac

Abstract - This paper presents, simple example of using
Component Template Library developed at the Institute of
Scientific Computing at Technical University of
Braunschweig, Germany as middleware software. Today,
most of physical problems have software or solver which
is developed for most technologically advanced actual
problems. But when we come to multiphysic problems we
need to couple some of those solutions, which is very
difficult considering the complexity of those solvers. As
example of coupling, the CTL is implemented in PAK
software at basic level and algorithm of connection
between client, module and processes is presented trough
simple communication of imported, computed and
exported data. The main advantage is that we make only
client and use our existing software as modules. This
implementation should be introduction to more complex
communication between different modules of PAK
software in the next phase of multiphysic software
development during the new project cycle of Ministry of
science.

1. INTRODUCTION

Implementation of the Component Template Library
(CTL) into the PAK software is the main and the most
important step in the PAK Multiphysiscs development.
Many physical problems can be solved using separate
applications, but real complicated problems need to
couple some of those solutions. Application of software
for the multiphysics problems has become necessary in
many branches of industry such as: automotive and
aircraft industry, civil engineering, electronics,
telecommunications, biomechanics etc. In order to
prepare future more complex connection between PAK
modules, the CTL is implemented in PAK software at
basic level using one module PAKS. Algorithm of
connection between imported, computed and exported
data should be simple explanation for easy appliance
between other PAK modules.

2.CONTENT TEMPLATE LIBRARY (CTL)

Middleware is relatively new addition to the computing
world. It gained popularity in the 1980s as a solution to
the problem of how to link newer application to older
legacy systems. Middleware is computer software that
provides a link between separate software applications. It
consists of a set of services that allows multiple processes
running on one or more machines to interact. Middleware
sits “in the middle” between application software that
may be working on different operating systems. It is layer
of software that lies between the application code and the
run-time infrastructure. Middleware generally consists of
a library of functions. The Component Template Library

(CTL) is an implementation of the component technology
based on C++ generic template programming. It can be
used to realize distributed component-based software sys-
tems, where a component is a piece of software which
consists of a well defined interface and an implementa-
tion. Interface and implementation are connected throw a
communication channel, e.g. TCP/IP or MPI. The idea
behind the CTL is to provide a mechanism which makes
the development of distributed systems as easy as possi-
ble, so that the differences between traditional monolithic
programs and complex distributed software systems near-
ly vanish.
Main design aspects for the CTL are:

 easy syntax (using overloading of suitable
operators)

 header only (no precompile or install)
 independance of other libraries (needs only

sockets, dlopen, pthreads,
 mpi/pvm can be used optionally)
 expandable for other communication protocols

(open communication interface
 and protocol)
 maximal decoupling of components (using idl,

abstract types)
 covering the parallel and the distributed

programming models (group and links)
 direct process to process communication (no

daemon in between)
 uniform behaviour of remote (tcp/ip, mpi, pvm,

pipes, daemons) and local (library,
 thread) linkage types
 extrinsic usage of user defined types
 support of user defined types

3.PAK MULTIPHISICS

Laboratory of Mechanical Software at the Faculty of Me-
chanical engineering in Kragujevac has been working for
over 30 years on developing its own software package
PAK, based on the Finite Element Method. It is home
grown general purpose FEM software. It contains mod-
ules for the pre- and post-processing and for solving prob-
lems in the fields of: solid mechanics (static and dynamic
structural analysis, geometrical and material nonlinear
problems, geomechanics, fracture mechanics material
fatigue, biomechanics), heat transfer, fluid flow etc. The
original methodology, based on published papers in the
world journals and books was applied in numerous fields.
Owing to the limitations of existing individual program
modules in solving complex coupled problems, the need
for fast development of software for multiphysics prob-
lems arose in recent years. Multiphysics problems are
characterized by close coupling of multiple physical proc-

esses, often studied in different scientific disciplines and
as the result of the new Ministry of science project, we
should develop PAK Multiphysics software for solving
the coupled multyphisics problems. The programming
package PAK-Multiphysics will contain individual PAK
modules for solid mechanics, fluid mechanics, heat trans-
fer and flow through the porous media, electrostatics,
magnetostatics, direct current flow and acoustics. In this
paper we present, basic implementation of CTL software
in PAK module in order to preview future coupling in
PAK Multiphysics software.

Figure 1 CTL communication layer

4.CTL COMMUNICATION LAYER

The CTL middleware can be used with different purpose:
parallelizing of existing software, coupling of different
applications, domain decomposition, etc. Our implemen-
tation into the PAK software is on basic level and it con-
sists of simple communication between instances of same
PAK module.

As we can see in figure 1, PAK Client communicate with
other instances of PAK modules trough CTL communica-
tion layer. PAK Client initializes problem solving and
read input data and delivers it to instances of PAK mod-
ules. They solve problem and give back results to PAK
Client which print results into the output file.

5.COMPARISON STATIC LINKAGE VERSUS CTL
LINKAGE

One main concept of the CTL is a generalization of link-
age.
In the monolithic case an application is build up by the
linker from a list of objects and dynamics or static librar-
ies. For each called function the compiler wants to see its
declaration. After compiling the linker first looks in the
given list of objects and libraries for an definition of the
called function and then binds the call to exactly one im-
plementation. In this case all listed objects and libraries
must be available at linkage time on the compiling ma-
chine. While run time this implementation will be exe-
cuted on the same processor in the same process as the
calling function.
The CTL gives both, the selection of the implementation
and the bindings, in users hand. At run time it can be se-
lected which implementation on which host to be linked
in which mode. In the definition of the library the binding
of the function signature to an implementation must be
given.

Figure 2. Dependence graph during classical connection (left) and component connection (right)

In our case, we have pak.exe instead of application.exe
and definition of interface are given in paks.ci file as:

#include <ctl.h>
#ifndef _PAKS_CI
#define _PAKS_CI
#define CTL_Class paksci
#include CTL_ClassBegin
#define CTL_Constructor1 (const array<double>), 1
#define CTL_Method1 array<double>, structure, (const
int4, const int4) const, 2
#include CTL_ClassEnd
#endif //__PAK_CI

This code defines connection between client and module,
and it has to contain all subroutines which will be invoked
remotely by client along with necessary parameters which
are needed by those subroutines, followed by a number of
parameters.

6.PROCESS OF DATA FLOW

There are several supported possibilities for data transfer
between instances of modules. They are all defined in
CTL and could be used for coupling of independent ap-
plications. In our case, we used shared object, and tcp/ip
for coupling between PAK module and PAK Client as it
is presented in Figure 3.

Figure 3 Data flow diagram

It presents flow diagram of data and possibilities for their
delivery between PAK client and modules. CTL supports
several ways of communication between client and mod-
ules, and they are:

- lib – behavior like classical static linkage
- thread – start in a separate thread each function
- tcp – use socket for communication
- pipe – use ssh to invoke services
- pvm – uses pvm for communication
- mpi – uses mpi for communication
- damons – uses sockets for communication

All those types of linkage are available, and existing of
different linkage variants are thereby, in the sense of
transparency, independent in syntax and program flow of
the chosen linkage.

7.CONLUSIONS

CTL offers prepared library which has defined template
for user’s problem implementation. Process of assembling
of our existing code into CTL template is simple because
of good support and documentation, and because it is
open source and it can be used without charge. Advan-
tages of CTL as middleware component in development
of PAK-Multiphysics product are great and the first step
in its full implementation is made through this experi-
ment. Possibility to couple modules through TCP/IP gives
many advantages for network use and online accessibility.
Presented information is necessary for further develop-
ment and application in other fields of interest. Under-
standing of presented work is important for many pro-
grammers in order to expand benefit of theirs legacy
software its and implementation in new applications
which they are developing.
Note: This paper is written in frame of Ministry of science
and technologic development project.

8.REFERENCES

[1] CTL Manual for Linux/Unix for the Usage with C++
[2] Miloš Kojić, Radovan Slavković, Miroslav Živković,
Nenad Grujović, Metod konačnih elemenata, Linearna
analiza, Osnove nelinearne analize, Faculty of Mechani-
cal Engineering, University of Kragujevac
 [3] Miloš Kojić, Radovan Slavković, Miroslav Živković,
Nenad Grujović, PAK-S, Program for FE Structural
Analysis, Faculty of Mechanical Engineering, University
of Kragujevac

