
Analysis of MUMPS and PETSc solvers integrated in PAK software

Nenad Busarac1, Vladimir Dunić1, Miroslav Živković1, Radovan Slavković1, Vladimir Milovanović1
1Faculty of mechanical engineering, Kragujevac

Abstract - In this paper, explanation of using two
different solvers: MUMPS and PETSc in PAK software
are presented. The MUMPS libraries have been already
used as serial and parallel solver while, PETSc libraries
are implemented as additional solution in order to
improve accuracy and efficiency. Achieved results are
also presented through several standard examples and in
case of PETSc we can use adequate solver for problem
that it is most suited for. The main advantage of used
libraries is that they are open source and available free of
charge but also other advantages and defects are noticed
in work with this solvers.

1. INTRODUCTION

Efficiency optimization is today one of the most
demanded jobs for programmers and software developers.
Using of external libraries capable to solve part of our
problem is one solution. Implementation of such libraries
is often only effort needed for necessary improvements.
For example, in our case, software package PAK uses
MUMPS and PETSc libraries for solving systems of
equations and the MPI standard for communication
between processes in parallel version. The differences
obtained using different solvers is shown and the results
obtained using both solvers. Also, advantages and
disadvantages that were identified during the operation
are presented.

2.FINITE ELEMENT METHOD SOFTWARE - PAK

Laboratory of Mechanical Software at the Faculty of
Mechanical engineering in Kragujevac has been working
for over 30 years on developing its own software package
PAK, based on the Finite Element Method. It is a home
grown general purpose FEM software. It contains
modules for the pre- and post-processing and for solving
problems in the fields of: solid mechanics (static and
dynamic structural analysis, geometrical and material
nonlinear problems, geomechanics, fracture mechanics
material fatigue, biomechanics), heat transfer, fluid flow
etc. The original methodology, based on published papers
in the world journals and books was applied in numerous
fields. Also, it has several home solvers for solving
systems if equations, but external libraries which contain
solver for that purpose were also implemented.

3.MUMPS

MUMPS (“MUltifrontal Massively Parallel Solver”) is a
package for solving systems of linear equations of the
form Ax = b, where A is a square sparse matrix that can
be either unsymmetric, symmetric positive definite, or
general symmetric. MUMPS uses a multi-frontal tech-
nique which is a direct method based on either the LU or

the LDLT factorization of the matrix. The main features
of the MUMPS package include the solution of the trans-
posed system, input of the matrix in assembled format
(distributed or centralized) or elemental format, error
analysis, iterative refinement, scaling of the original ma-
trix, detection of zero pivots, and return of a Schur com-
plement matrix. MUMPS offers several built-in ordering
algorithms, a tight interface to some external ordering
packages such as METIS (strongly recommended) and
PORD, and the possibility for the user to input a given
ordering. Finally, MUMPS is available in various arith-
metics (real or complex, single or double precision).
The software is written in Fortran 90 although a C inter-
face is available. The parallel version of MUMPS requires
MPI for message passing and makes use of the BLAS,
BLACS, and ScaLAPACK libraries. The sequential ver-
sion only relies on BLAS.
MUMPS is downloaded from the web site almost once a
day on average and has been run on very many machines,
compilers and operating systems, although our experience
is really only with UNIX based systems. We have tested it
extensively on parallel computers from SGI, Cray, and
IBM and on clusters of workstations.
MUMPS distributes the work tasks among the processors,
but an identified processor (the host) is required to per-
form most of the analysis phase, to distribute the incom-
ing matrix to the other processors (slaves) in the case
where the matrix is centralized, and to collect the solu-
tion. The system Ax = b is solved in three main steps:
1.Analysis. The host performs an ordering based on the
symmetrized pattern A+AT, and carries out symbolic fac-
torization. A mapping of the multifrontal computational
graph is then computed, and symbolic information is
transferred from the host to the other processors. Using
this information, the processors estimate the memory nec-
essary for factorization and solution.
2.Factorization. The original matrix is first distributed to
processors that will participate in the numerical factoriza-
tion. The numerical factorization on each frontal matrix is
conducted by a master processor (determined by the
analysis phase) and one or more slave processors (deter-
mined dynamically). Each processor allocates an array for
the so called contribution blocks and for the factors; the
factors must be kept for the solution phase.
3.Solution. The right-hand side b is broadcast from the
host to the other processors. These processors compute
the solution x using the (distributed) factors computed
during Step 2, and the solution is either assembled on the
host or kept distributed on the processors.
Each of these phases can be called separately and several
instances of MUMPS can be handled simultaneously.
MUMPS allows the host processor to participate in com-
putations during the factorization and solve phases, just
like any other processor.

For both the symmetric and the unsymmetric algorithms
used in the code, we have chosen a fully asynchronous
approach with dynamic scheduling of the computational
tasks. Asynchronous communication is used to enable
overlapping between communication and computation.
Dynamic scheduling was initially chosen to accommodate
numerical pivoting in the factorization. The other impor-
tant reason for this choice was that, with dynamic sched-
uling, the algorithm can adapt itself at execution time to
remap work and data to more appropriate processors. In
fact, we combine the main features of static and dynamic
approaches; we use the estimation obtained during the
analysis to map some of the main computational tasks; the
other tasks are dynamically scheduled at execution time.
The main data structures (the original matrix and the fac-
tors) are similarly partially mapped according to the anal-
ysis phase.

4.PETSC

PETSc, the Portable, Extensible Toolkit for Scientific
computation, provides sets of tools for the parallel (as
well as serial), numerical solution of PDEs that require
solving large-scale, sparse nonlinear systems of equations.
PETSc includes nonlinear and linear equation solvers that
employ a variety of Newton techniques and Krylov
subspace methods. PETSc provides several parallel sparse
matrix formats, including compressed row, block
compressed row, and block diagonal storage. The table
below gives an overview of the main numerical
components of the PETSc library:

Figure 1

PETSc is designed to facilitate extensibility. Thus, users
can incorporate customized solvers and data structures
when using the package. PETSc also provides an interface
to several external software packages including
BlockSolve95, ESSL, Matlab, ParMeTis, PVODE, and
SPAI. PETSc is fully usable from Fortran, C and C++,
and runs on most UNIX based-systems.
PETSc has several features that make it very convenient
for the application programmer. Users can create
complete application programs for the parallel solution of
nonlinear PDEs without writing much explicit message-
passing code themselves. Parallel vectors and sparse
matrices can be easily and efficiently assembled through
the mechanisms provided by PETSc. Furthermore, PETSc
enables a great deal of runtime control for the user
without any additional coding cost. The runtime options
include control over the choice of solvers, preconditioners

and problem parameters as well as the generation of
performance logs.

5.IMPLEMENTATION OF PETSC AND MUMPS
INTO PAK

We will describe how MUMPS and PETSc solvers are
integrated into PAK. Firstly we needed to go through all
code and implement MPICH which is needed for
MUMPS and PETSc to work in parallel. MPICH must be
initialized at the start of program and finalized at the end.
Also, all code that was meant to be run sequentially had to
be skipped by use of line “if (myid.ne.0) goto X”. When
we went to all the code and made sure that we don’t have
dead ends in all threads, then MUMPS and PETSc sub-
routines could be implemented. In figure 2, the procedure
where MUMPS and PETSc calls are made is shown.

Figure 2

These procedures contain source code written in FOR-
TRAN. Basically they adapt matrix and vectors to format
that can be used by solvers. After implementation both
solvers ware tested on benchmark test. The accuracy of
both solvers satisfied tolerance which is proposed by test
itself.

6.ANALYSIS OF MUMPS AND PETSC SOLVERS

Implemented solvers have had to be tested for accuracy.
We had benchmark problem (unit cube clamped at one
side and loaded by unit pressure on the opposite side) for
this purpose that have already was run on dozen of previ-
ous solvers, which were developed in ISLAB on Faculty
of Mechanical Engineering in Kragujevac, and we had the
results to compare with. Since previous solvers were se-
quential we tested both solvers sequentially.

Figure 3

10 CALL MPI_BARRIER(PETSC_COMM_WORLD,ierr)
 CALL MPI_BCAST(iccgg,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr)
 CALL MPI_BCAST(imumps,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr)
 CALL MPI_BCAST(k,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr)
 IF(IABS(ICCGG).EQ.1) THEN
 IF(ICCGG.EQ.1) THEN
 if (rank.ne.0) goto 20
 IF(kkk.EQ.1)THEN
c PSI=1.D-6
 psi=tolg
 MAXA(JEDN+1)=MAXA(JEDN)+1
C CALL DRSWRR(A(LSK),MAXA,A(IROWS),JEDN,'SK U')
 CALL ICM(JEDN,NWK,NNZERO,NM,NMREJ,PSI,
 + A(LSK),MAXA,A(IROWS),A(LM0),A(LMaxM1),A(LColM),
 + A(Lr1),A(Lz1),A(Lp1))
 PRINT*, NWK, NNZERO, NM
C CALL DRSWRR(A(LSK),MAXA,A(IROWS),JEDN,'SK I')
 ELSE
 CALL JEDNA1(A(Lr1),V,JEDN)
C EPSILON=1.D-10
 EPSILON=1.D-8
 CALL ICM_CG(V,A(LSK),MAXA,A(IROWS),A(LM0),A(LMaxM1),
 + A(LColM),A(Lr1),A(Lz1),A(Lp1),
 + JEDN,NWK,NM,EPSILON,TOL,NITER)
20 ENDIF
 ELSE
 if(imumps.eq.1.or.imumps.eq.2) then
c if(k.eq.2) then
 CALL MPI_BARRIER(PETSC_COMM_WORLD,ierr)
 if(imumps.eq.2) then
 call pakpetsc(A(IROWS),A(IROWS+nwk),B,V,nwk,nn,k)
 else
 CALL dmumps1(A(IROWS),A(IROWS+nwk),B,V,nwk,nn,k)
 end if
 IF (rank.ne.0) return
 else
 IF (rank.eq.0) CALL ICCGMA(B,V,MAXA,NWK,NN,
 1 K,IZLAZ,TOLG,ALFAG)
 endif
 ENDIF
 ELSE

7.CONCLUSION

PAK software for structural analysis using Finite Element
Method, was most useful with its old solvers, but the most
interesting are its capabilities that are opened with usage
of MUMPS and PETSc.
The advantages of using these solvers were numerous:
Memory usage when using sparse matrices, speedup of
calculation when using solver in parallel on cluster, spee-
dup due to optimized solver code in sequential version,
using PETSc internal functions for domain decomposition,
etc.
It is very important to mention that MUMPS and PETSc
are open source software, which imply that they have
great community involved in their development and that
they can be used free of charge.
Note: This paper is written in frame of Ministry of science
and technologic development project.

8. REFERENCES

[1]Balay, Buschelman, Eijkhout, Kaushik, Knepley,
McInnes, Smith and Zhang, PETSc User Manual, March
2010
[2] MUltifrontal Massively Parallel Solver Users guide,
November 2009
[3] Miloš Kojić, Radovan Slavković, Miroslav Živković,
Nenad Grujović, Metod konačnih elemenata, Linearna
analiza, Osnove nelinearne analize, Faculty of Mechani-
cal Engineering, University of Kragujevac
 [4] Miloš Kojić, Radovan Slavković, Miroslav Živković,
Nenad Grujović, PAK-S, Program for FE Structural
Analysis, Faculty of Mechanical Engineering, University
of Kragujevac

