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Abstract – Very important function in development of the 
Finite Element Method (FEM) have several material 
models. This paper presents that simbolic programming 
represents one powerful tool in the generating material 
models. The main attention is given on the hyperelastic 
material model development for 3D eight-node finite 
element. The secound part of this paper presents example 
of tension and compression cubes. 
 
1. INTRODUCTION  
 
Finite element method (FEM) is the most revolutionary 
and most general numerical method, which has now 
become necessary in solving scientific and practical tasks 
in many areas of science, technology and medicine. 
Important role in the development of FEM has a large 
number of material models, including hyperelastic 
material model, which will be presened in this paper. The 
advantage of symbolic programming in the development 
of new material models is that the corresponding finite 
element code generated automatically. The paper uses a 
system for symbolic and algebraic programming 
(Mathematica) and within it a developed modules 
AceGen [1], AceFEM [2] and AceShare [3], which 
together constitute a system named of Symbolic 
Mechanics System [4]. 
 
Mathematica is a basic and very powerful tool for 
working with formulas and to perform various 
mathematical operations and expressions with the help of 
computers. Modern versions include the possibility of 
presenting results and numerical analysis. 
 
The Mathematica package AceGen is used for the 
automatic derivation of formulae needed in numerical 
procedures. Symbolic derivation of the characteristic 
quantities (e.g. gradients, tangent operators, sensitivity 
vectors,…) leads to exponential behavior of derived 
expressions, both in time and space. 
AceGen offers multi-language code generation 
(Fortran/Fortran90, C, Mathematica language, Matlab 
language) and automatic interface to general numerical 
environments (MathLink connection to Mathematica, 
Matlab) and specialized finite element environments 
(AceFEM, FEAP, ELFEN, ABAQUS, …) 
The AceFEM package is a general finite element 
environment designed to solve multi-physics and multi-
field problems. The AceFEM package explores 
advantages of symbolic capabilities of Mathematica while 
maintaining numerical efficiency of commercial finite 
element environment. The main part of the package 
includes procedures that are not numerically intensive, 
such as processing of the user input data, mesh 

generation, control of the solution procedures, graphic 
post-processing of the results, etc. 
 

 
Figure 1. System for generating a finite element code and 

its further analysis 
 

Those procedures are written in Mathematica language 
and executed inside Mathematica. The numerical module 
includes numerically intensive operations, such as 
evaluation and assembly of the finite element quantities 
(tangent matrix, residual, sensitivity vectors, etc.), 
solution of the linear system of equations, contact search 
procedures, etc.. The numerical module exists as 
Mathematica package as well as external program written 
in C language and is connected with Mathematica via the 
MathLink protocol. This unique capability gives the user 
the opportunity to solve industrial large-scale problems 
with several 100000 unknowns and to use advanced 
capabilities of Mathematica such as high precision 
arithmetic, interval arithmetic, or even symbolic 
evaluation of FE quantities to analyze various properties 
of the numerical procedures on relatively small examples. 
On Figure 2. is shown the organizational structure of a 
AceFEM. 
 

 
Figure 2. The structure of AceFEM organization 

 



The AceFEM package comes with a library of finite 
elements (solid, thermal, contact,... 2D, 3D,...) including 
full symbolic input for most of the elements. Additional 
elements can be accessed through the AceShare finite 
element file sharing system. The element oriented 
approach enables easy creation of costumized finite 
element based applications in Mathematica. In 
combination with the automatic code generation package 
AceGen the AceFEM package represents an ideal tool for 
a rapid development of new numerical models.  
The AceFEM environment comes with a small build-in 
library including standard solid, structural, thermal and 
contact elements. Additional elements are accessed and 
automatically downloadable through the AceShare 
system. The AceShare system is a file sharing system 
built in AceFEM that makes AceGen symbolic 
descriptions and generated finite element user subroutines 
available for other users to download over the Internet. 
The AceShare system enables: browsing the on-line FEM 
libraries; downloading the finite elements from the on-
line libraries; formation of the user defined library that 
can be posted on the internet to be used by other users of 
the AceFEM system. 
 
2.  THEORETICAL BASIS 
 
3D isoparametric eight-node finite element is used to 
model three-dimensional bodies of general shape (3D 
Continuum). Interpolation of geometry and displacements 
are in the form [5] 
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where are: interpolation matrix N and vectors coordinates 
of nodes X and displacement of nodes U. Note that 
equation (1) and (2) can be written in component form as 
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where i = 1 corresponds to the x axis, and j= 2 - y axis, 
and k= 3 – z. In the case of a finite element with 8 nodes, 
interpolation functions are in the form: 
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Functions iN ( , , )    are linear in , ,    and because of 

this fact this element is called a linear. Its surfaces are the 
planes in physical space, as shown in Figure 3. Element 
from x-y-z space is mapped into a cube whose 

coordinates of nodes i i i, ,   are equal ±1, as it is given 

with table on Figure 3. This procedure of marking and 

input of nodes is characteristic for AceGen defining of 
eight-node 3D finite element. 

 
NODE i  i  i  

1    -1 -1 -1 
2   1 -1 -1 
3   1  1 -1 
4  -1  1 -1 
5  -1 -1   1 
6   1 -1   1 
7   1  1   1 
8  -1  1   1 

Figure 3. 3D eight-node finite element  
 

If we introduce a Jacobian transformation between 
Cartesian and natural systems, as 
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and inverse Jacobian 
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We introduce the gradient of the displacement, 
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and tensor of deformation gradient 

 F 1 D  (9)

 
Hyperelastic (Neo-Hookean) material model. 
Hyperelasticity refers to the material, where the final 
elastic strain is reversible. Rubber and many other 
polymeric materials belong into this category. Stresses for 
these materials are calculated using the strain energy. 
Second Piola-Kirchhof stress tensor is defined as first 
derivative strain energy function by right Cauchy-Green 
deformation tensor [6] 
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where right Cauchy-Green deeformation tensor is equal 
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and function is expressed in terms of streches 1 2 3, ,   . 

Invariants of tensor C are: 
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Deformation gradient can be divided on volumetric and 
distortional component. 

F F Fiso vol  (13)

As we know that the determinant of deformation gradient 
gives the ratio of initial and current volume, we can 
conclude that the determinant of the distortional 
component is equal to: 

det 1Fiso  (14)

to satisfy this requirement distortional component must be 
in the form: 

1/3iso
ij ijF F J  (15)

Distortional component of right Cauchy-Green 
deeformation tensor ijC  may be defined as: 

2/3C Ciso J  (16)

as follows from the definition of deformation distortional 
gradient: 
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Right Cauchy-Green deformation can be expressed in 
terms of streches: 
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from definition of Jacobian we have: 
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Strain energy function in the case of isotropy is shown as 
function expressed in terms of streches: 

1 2 3( , , )      (24)

This fuction is simetric function expressed in terms of 
streches 1 2 3, ,   . 

Neo-Hookean material model of rubber is model defined 
with two parametars (constants). Hyperelastic potencial in 
this case is represented as sum of isohoric and volumetric 
part. 
Isohoric part of strain energy is set as: 
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and volumetric part:  
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Total strain energy function of Neo-Hookean material 
model of rubber [7] i [8] is given as 
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where μ present shear modulus (other literature G or 1C ) 

which is equal: 

 2 1







E  (29)

and K ( 3C or bK ) is bulk modulus equal to: 
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where E is Young elasticity modulus, and ν Poisson 
coeficient. 
Some authors [4] i [9], define strain energy function of 
Neo-Hookean material modelof rubber in the different 
shape: 
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where μ present shear modulus, and λ Lame’s constant 
equal to: 
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Green-Lagrange deformation tensor defined by 
deformation related to the initial configuration. 
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Cauchy stress tensor σ  is equal 
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where 
t  is current density. For definition of Cauchy 

stress tensor was used free energy per unit of current 

volume t  . If for definition of stress tensor use free 

energy per unit of initial volume 0  , we have 

Kirchhoff stress tensor σ . Determinant of tensor of 
deformation gradient is equal: 
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so we have  
0

det( )

1

 









σ F
F F

σ F
F

T

T

J

 (36)

for Cauchy stress tensor and Kirchhoff-stress tensor. 



3. GENERATION OF HYPERELASTIC (NEO-
HOOKEAN) MATERIAL MODEL AND ANALYSIS 
OF OBTAINED RESULTS  
 
AceGen procedure for generating code to work in finite 
element environment consists of a several steps: 
 

1. Step 1 – Initialization 
 Read of AceGen code generator 

<<AceGen`; 
 Select the working environment 

SMSInitialize["test","Environment""Ac
eFEM"]; 

 Select the type of finite element (H1- 3D eight-
node finite element) 

SMSTemplate["SMSTopology""H1","SMSSym

metricTangent"True]; 
 

2. Step 2 – Definition of user subroutine 
SMSStandardModule["Tangent and 
residual"]; 

 Definition of input-output variables 
 Kinematics of the selected type of finite element 
 Definition of test function 
 Definition of governing equations 
 Definition of Jacobian matrix 
 Definition of stiffness matrix 

 
3. Step 3 – Definition of output variables using 

subroutine for postprocessing 
SMSStandardModule["Postprocessing"]; 

 
4. Step 4 – Generation of code 

SMSWrite[]; 
 
Standard AceFEM procedure consists two basic phase. 

 
1. Phase Data Entry 

- phase starts with SMTInputData 
- description of the material model of finite 
element (SMTAddDomain) defined by code which must 
be generated before analisys 
- mesh generating 
 (InputData,  SMTAddElement) 
- setting boundary conditions 
(SMTAddEssentialBoundary)  
- setting loads 
 (SMTAddNaturalBoundary) 
 

2. Phase analysis 
- phase starts with SMTAnalysis 
- solution procedures are executed by the user 
enters inputs (SMTConvergence) 
- solving problem by standard Newton-Raphson 
iterative method 
- postprocessing of results as part of analisys 
(SMTShowMesh) or later independently of the analysis 
(SMTPut) 
 

Example. Tension and compression of 3D eight-node 
finite element 
Observes the example of tension and 3D eight-node finite 

element (length 2cm, Young modulus 2
NE = 11.83 

cm
 

and Poisson coeficient = 0.499 ), boundary conditions 
are shown on Figure 4. Nodes 5,6,7,8 are free 
and set to prescribed displacement in the z-direction and 
increment of displacement is equal 0.1 . 

0  u v w  for nodes 1,2,3,4 
0  u v w  for nodes 5,6,7,8 

 
 

Figure 4. Boundary conditions 
 
Displacement field for case of tension of cube is shown 
on Figure 5 and displacement field for case of 
compression of cube is shown on Figure 6. Beside 
displacement in z direction, it is possible to show the 
other two displacement, as well as the normal and shear 
components of stress and strain by simply selecting from 
Field palette, which is located in the main menu of 
AceFEM window. 
 

 
 

Figure 5. Displacement field for case of tension of cube 
 



 
 

Figure 6. Displacement field for case of compression of 
cube 

The results of numerical solutions are consistent with the 
results presented in the literature. In the future it is 
necessary to compare the calculation for this example and 
for the other benchmark examples with other FEM 
softwares as ABAQUS, ANSYS, NASTRAN, and PAK 
software package [10], which is being developed at the 
Faculty of Mechanical Engineering in Kragujevac. 
 
4. CONCLUSIONS 

 
The primary objective of this paper was to show that the 
symbolic programming is a powerful tool for generating 
the material models. The main attention is given on the 
hyperelastic material model development for 3D eight-
node finite element, but it is given basis for creating other 
material models if it is known total energy of deformation 
and other constitutive relations that describe the desired 
material model. 
 
AceGen is presented as multilanguage code generator, 
which can generate different material models for different 
types of finite element. It is as an independent FEM 
environment and AceShare on-line library with material 
models for different types of finite element. All three 
modules present complete FEM system. 
 
All this represents an indicator that the application of 
symbolic programming with knowledge of the total 
energy of deformation and constitutive relations, we can 
generate other, new material models. This new symbolic 
approach can make a huge, all available, a library of 
material models, which can always be upgraded with new 
material models. 
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