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PREFACE 


This volume contains the Abstracts and de CD-Rom Proceedings of the papers 
presented at COUPLED PROBLEMS 2005, "First International Conference on 
Computational Methods for Coupled Problems in Science and Engineering", held 
in Santorini Island, Greece from May 25-27, 2005. 

The increasing necessity to solve complex problems in science and engineering 
accounting for all the coupling occurring on the different scales of the problem 
requires the development of new ideas and methods which can effectively provide 
a new level of mathematical modeling and numerical solution. This will lead to 
a deeper understanding of physical phenomena and a greater improvement in 
engineering design. 

The objective of COUPLED PROBLEMS 2005 is to present and discuss state of 
the art mathematical models, numerical methods and computational techniques 
for solving accurately and with affordable computing times coupled problems of 
multidisciplinary character in science and engineering. Emphasis will be given 
on showing the potential of new computational methods for solving practical 
multidisciplinary problems of industrial interest. 

The conference goal is to make a step forward in the formulation and solution of 
real life problems with a multidisciplinary vision accounting for all the complex 
couplings involved in the physical description ofthe problem. 

This is the first International Conference on this subject organized in the framework 
ofThematic Conferences ofthe European Community on Computational Methods 
in Applied Sciences (ECCOMAS). 

The conference is jointly organized by the Greek Association for Computational 
Mechanics (GRACM), the National Technical University Athens (NTUA), and 
the International Center for Numerical Methods in Engineering (CIMNE), in co
operation with the University of Pad ova and Universitat Politecnica de Catalunya 
(UPC). The organizers, as well as the Technical Advisory Panel, acknowledge the 
encouragement and support of ECCOMAS and the International Association for 
Computational Mechanics (IACM) under whose auspices this conference is held. 

Altogether about J 80 lectures will be given, including nine plenary lectures, which 
reflect the current state ofthe research and advances in engineering practice in this 
field. 

Manolis Papadrakakis Eugenio Oilate Bernhard Schrefler 
Institute ofStructura1 International Center fur Istituto di Construzioni 

Analysis & Seismic Research Numerical Methods in Engineering Universita di Padova 
National Technical University of 

Athens Athens, Greece 
(CIMNE) 

Universitat Politecnica 
de Catalunya (UPC) 

Padova, 
Italy 

Barcelona, Spain 
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Abstract. Numerical methods, especially the finite element (FE) method, have been widely 
used in computational fracture mechanics. However, modelling ofthe crack and its growth in 
the traditional FE framework require that FE mesh coincidences with the internal boundary 
ofthe crack and desire some technique for remeshing. In the P AK software that is developed 
on the Faculty ofMechanical Engineering ofthe University ofKragujevac, beside traditional 
FE method and X-FEM (eXtended Finite Element Method) is incorporated. The X-FEM is . 
recently developed technique for modelling cracking within the finite element (FE) framework 
that use meshes independent of the crack configuration and thus avoid remeshing. In the X
FEM a discontinuous function and asymptotic crack-tip displacement fields are added to the 
finite element approximation to account for the crack using the notion ofpartition of unity 
(PU). This enables the domain to be modelled by finite elements with no explicit meshing of 
the crack. Numerical integration for the enriched elements, linear dependence and the 
corresponding solution techniques for the system ofequations, as well as the accuracy ofthe 
crack tip fields are addressed. For calculation stress intensity factors (SIFs) we used J
integral. In this paper equivalent domain integral (ED/) method for evaluation of the J
integral is presented. The developed numerical model for J-EDI method is incorporated in the 
PAK software. The J-EDI method for determination SIFs in the traditional FE and X-FEM 
framework is used. 

This method applied to a number of test cases. Numerical results are compared with 
relevant theoretical values. Using the developed software, the stress intensity factors of the 
steam turbine housing were calculated and compared with the corresponding results obtained 
with COSMOS software. The results indicate that the developed procedure can be very useful 
tool for modelling real structures containing cracks. Also, at the final part of this paper, the 
example of the crack growth simulated by using remeshing free X-FEM (FE framework) is 
presented and obtained numerical results are compared with available data from referenced 
literature. 

Application ofthe J-EDI integral is suitable for applications because it relies on use ofthe 
domain integrals rather than contour integrals. Obtained numerical results show a small 
influence of the choice of the J-integral domain integration on value of the stress intensity 
factor. Analysis ofthe complex 3-D problems shows that a stable crack growth is predicted in 
nominal regime of the analyzed structure, while 2-D analysis shows a rapid increase of the 
stress intensity factor for the large crack depth. 

http://www.kg.ac.yulzile
mailto:zile@kg.ac.yu.webpage
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INTRODUCTION 


Stlldies of the fracture mechanics emerged in the early twentieth century. Among a number 
of researchers, Griffith's idea of "minimum potential energy" provided a foundation for all 
later successful theoretical studies of fracture, especially for brittle materials. But it was not 
until after World War II that fracture mechanics developed as a discipline. Derived from 
Griffith's theorem, the concept of energy release rate G, was frrst introduced by Irwin, in a 
form more useful for engineering applications. Irwin defined an energy release rate or the 
crack extension force tendency which can be determined from the stress and displacement 
fields in the vicinity of the crack tip rather then from an energy balance for elastic solid as a 
whole, as Griffith suggested. 

Conservation integrals in elasticity have been widely applied to the fracture mechanics, 
among which the 1 integral is the most popular one. The J integral is path independent for 
elastic solids, and can be shown that the integral is identical to Irwin's energy release rate 
associated with the collinear extension ofa crack in elastic solid, Ricel . 

The eXtended Finite Element Method (X-FEM) attempts to alleviate the computational 
challenges associated with mesh generation by not requiring the finite element mesh to 
conform to cracks, and in addition, provides a means to use higher-order elements or special 
finite elements without significant changes in the formulation. Building on prior work due to 
Belytchko et al.2, foundations of the method were presented in Moes et al.3 for 2-dimensional 
cracks. 

The essence of the X-FEM lies in sub-dividing a model problem into two distinct parts: 
mesh generation. for the geometric domain (cracks not included), and enriching the finite 
element approximation by additional functions that model the cracks and other geometric 
entities. 

Modelling crack growth in a traditional finite element framework is cumbersome due to 
need for the mesh to match the geometry of the discontinuity. Many methods require 
remeshing of the domain at each time step. In the X-FEM the need for the remeshing is 
eliminated. The mesh does not change as the crack growths and is completely independent of 
the location and geometry of the crack. The discontinuities across the crack are modelled by 
enrichment functions. 

2 EQUIVALENT DOMAIN INTEGRAL METHOD (J-EDl) 

Rice l defmed a path-independent I-integral for two-dimensional crack problems in linear 
and nonlinear elastic materials. As shown in the Fig. I), 1 is the line integral surrounding a 
two-dimensional crack tip and is defined as 

(1)J.. = lim f(Wc5\. - G'..u.\)n .df i,j=1,2
f ->0 } I) I, } 

s fs 

where W is the strain energy density given by 

1 1 (2) 
W ='2G'I>ij = '2Cijlrhl&ij 
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and nj is the outward normal vector to the contour integration r s is around the crack tip (as 

shown in rig. 1), uij is stress tensor, 8ij is strain iensor, Cij/d is constitutive tensor and uj are 

components vector ofthe displacement. 

Figure 1: Conversion of the contour integral into an ED! 

Knowles et al,4 noted that this can be considered as the first component ofa vector 

J k = lim J(W0Tri-cy..u.k)n.df i,j,k=I,2 (3)r ~o . lj I, } 

S rs 

which is also path independent. 
Helen et al.s showed that 

(4) 

where K] and K]] are stress intensity factors for modes I and II respectively. Thus the values 

of energy release rates (J1 and J 2 ) for crack extension perpendicular and parallel to the 

crack, respectively, will be given by: 
(5) 

J =K;+K; 

I E* 
J = -2K]K[[ 

2 E* 
where 

plane strain 

E*={~ 
(6) 

plane stress 
I-v2 

Note that solution equation (5) is the intersection of circle and a hyperbola. Hence there 

http:u.k)n.df
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exists more than one pair of stress intensity factors. 
The contour integral (1) is not in a form best suited for finite element calculations. We 

therefore recast the contour integral into an equivalent domain form. The equivalent domain 
integral method (EDI) is an alternative way to obtain the J-integraL The contour integral is 
replaced by an integral over a finite-size domain. The EDI approach has the advantage that 
the effect of variable body forces can easily be included. The standard J-contour integral 
given by (3) is rewritten, by introducing a weight function q(~,xJ into the ED!. Hence, we 

define the following contour integral 

(7)
\}I = f(WOkj - (jiPi,k)mjqdr i,j,k =1,2 

r 

where is contour r =r 0 +r+ - r s +r (Fig. 1), mj is a unit vector outward normal to the 

corresponding contour (i.e. mj =njon ro and mj =-njon rs)' and q is a weight function 

defined as q =1 inside the contour r and q =0 for the domain outside r . 
Taking the limit r s ~ 0, q =0 on r 0 and the crack faces are assumed to be traction-free, 

the above equation becomes 

(8)i,j,k=I,2 

Now applying the divergence theorem to (8), we obtain the following J-EDI 

(9)Jk = r ((j..u. k -WOkj)q .dA + r ((j ..u. k -:-WOkj) qdA i,j,k =1,2JA Y I, ,j JA Y I, ,j 

where A is the area enclosed by r. Note that the second term in the above equation must 
vanish for linear-elastic materials3,6 and that we have 

(10)i,j,k =1,2 

In 3D case the J-EDI integral is converted into a volume integrae,7 as 

(11) 
J k =-~ !(WOkj-UijUi,k)q,jdV i,j,k =1,3 

where f =(2/ 3)!:J., with!:J. being the thickness of the 3D element in the direction of the 
crack front. 

NUMERICAL EVALUTATION OF THE J-INTEGRAL 

The J-integral evaluation in the PAK program is based on the domain integration method 
described above. A direct evaluation of the contour integral is not practical in the finite 
element analysis (FEA) due difficulties in defining the integration path r. The conversion of 
the contour integral to the domain integral is exact for the linear elastic case and also for the 
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nonlinear case if no unloading occurs6• 

When the material of the considered structure i~ homogeneous and the body forces are 
absent, the finite element implementation of (1 0) becomes very similar to that of the contour 
integral. The only difference is the introduction of the weight function q when (10) is used. 
With the isoparametric finite element formulation the distribution of q within the elements is 
determined by a standard interpolation scheme with use of the shape functions hi: 

(12) 

where Qi are values of the weight function at the nodal points, and m is the number ofnodes. 

The spatial derivatives of q can be found by use of the usual procedures for isoparametric 

elements. 
The equivalent domain integral in 2D can be calculated as a sum of the discretized values 

of (1 0),1: 

(13) 

and the equivalent domain integral (11) in 3D is 

(14) 

Jk =l L f[(O".. ~Ui -WOkj) oq det(OXm )] W i,j,k,m,n=1,3
f ~/ements p=l y oXk oX] 01]n P 

mV p 

The tenns within [.]p are evaluated at the Gauss points with use of the Gauss weight 

factors for each point are wp. The present fonnulation is for a structure of homogeneous 

material in which no body forces are present. For the numerical evaluation of the above 
integral, the domain A is set from the set of elements about the crack tip. The domain A is set 
contain all elements which have a node within a ball of radius rd about the crack tip, Fig. 2). 

The function q is then easily interpolated within the elements using the nodal shape functions, 
according to (12), where Qi =1 for nodes within ofdomain A and Qi =0 for nodes out ofA. 

Since the FEM calculation of displacements, strains, stresses, etc., are based on the global 
coordinate system, the (Jk)g/oba/ is evaluated first and then, if needed, transformed into 

(Jk)/oca/. The above expressions are represented by the local coordinatesxk ,(k=1,2), which 

can be expressed in terms ofthe global coordinates Xi by the transformation: 

(15) 
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The same transformation also holds for the J k integral8 

(16) 

Figure 2: Domain integration for J-ED! 

4 EXTENDEDFllaTEELEMENTMETHOD 

In particular instance of 2-d crack modelling, the enriched displacement approximation is 
writen as3: 

uh(x) =[~N[(X)[UI +~+t'f'~(X)b~,J 
(17) 

[eN. 

where u[ is the nodal displacement vector associated with the continuous part of the finite 

element solution, a[ is the nodal enriched degree of freedom vector associated with the 

Heveisade (discontinuous) function H(x), and b~ is the nodal enriched degree of freedom 

vector associated with the elastic asymptotic crack-tip function 'f'a(x). In the above equation 

Nu is the set of all nodes in the element; Na is the set of nodes whose shape function support 

is cut by the crack; and Nb is the set of nodes whose shape function support is cut by the 

crack tip. With x we denote Descartes coordinates in 2d space. 
The interior of the a crack is modelled by the generalized Heveisade enrichment function 

H(x), where H(x) takes on the value +1 above the crack and -1 below the crack: 

(18)
H(x) ={ I if(x-x·).n <:: 0 

-1 if(x-x*).n <0 

where x is a sample (Gauss) point, x· (lies on the crack) is the closest point to x, and n is unit 
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outward normal to crack at x' . 

The crack tip emichment functions in isotropic elasticity are3: 

(19) 
':P(x) ={':PI ':P2 ':P3 ':P4} ={.frcos~ .frsin ~ .frsin ~sinB .frcos~sin B} 

where r and B denotes polar coordinates in the locale system at the crack tip. 

5 THE FATIGUE LIFE ESTIMATION 

The unstable crack propagation occurs when one of the stress intensity factors 
Ka (a =I,II,III) is equal or greater then experimentally determined material property Kc' 

The estimation of fatigue life can be updated for each crack extension. The crack growth 
equation provides a relation between the crack increment l:!.a and the increment in the number 
of load cycles llN. In case of cyclically loaded structures the number of load cycles 
equivalent to the crack increment can be determined by a numerical integration of the 
governing crack growth equation9• 

The Paris law is a simple but very often used model for description of the crack growth 
rate in the linear region under mode I. This law has the form 

(20) 

where M is the stress intensity factor range, and C and m are the material constants. A 
shortcoming of the Paris law is that it neglects the influence of the peak stress and the 
threshold range. 

The growth of cracks under mode I and mode II was first systematically studied by !ida et 
al.10• The results of their experiments showed that even a small M II increase would 
significantly increase the crack growth rate. However, they also observed that the crack 
tended to grow in the direction of minimum Ky. Some models take into account the mode II 

contribution. One way is by introducing an equivalent stress intensity factor M]eq in the 

Paris equation 

(21) 

The maximum stress criterion can also be used to determine the equivalent mode I stress 
intensity factor, according to the following expression 

(22) 
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where 00 denotes the direction in which the crack is likely to propagate relative to the crack 
+;~ n",,~,.1;_n+o n..n+n~ n_A A V !- c ____ -' ... - 1... - .... - - V" --an-g-e o'urm'gone 'loao' cyc'le
up ,",vvJ.uuJ.a\."" ~)","\,.IJ11, a.l1U L.U"'-Jeq 1~ l.UWIU LU U~ Ule;:: A 1eq r . 

Tanakall carried out experiments on cyclically loaded sheets of pure aluminum with initial 
cracks inclined to the tensile axis. As a by-product, the experiments formed the basis for a 
crack propagation law 

da =C(M \m 
(23) 

dN eql 

where 

Meq =(M; +8M;)1/4 (24) 

The above equation was developed on the assumptions that a) plastic deformation due to 
cyclic tension and transverse shear are not interactive, and b) the resulting displacement field 
is the sum ofthe displacements from the two modes. 

For given crack geometry, by using of X-FEM one can defines the field of displacement 
and the stress state as well. Let (a",u") denote stress state and displacement obtained in the n

th step of the simulation. Based on calculated stress and deformation states, which correspond 
to n-th step of simulation, by using of J-ED! method we can obtain values of the stress 
intensity factors K; and K~. 

Obtained values of the stress intensity factor can be used for defining the angle of crack tip 
propagation B;+I and the increment of the crack growth &1n+1 as well. With parameters 

( 0;+1 ,~a"+1 ) we can define new segment of crack, i.e., new crack geometry that will be initial 
configuration for n+ 1 simulation step. 

Angle of propagation Btl as well as increment ofcrack growth &1"+1 can be defined in the 
local coordinate system associated to the n-th crack tip. Also, these parameters could be used 
for calculation ofthe coordinates of the new crack tip X;+I. 

Angle ofpropagation B;+I could be calculated by criterion ofmaximum hoop stresslO: 

(25) 

Crack growth increment ~an+1 could be specified at the beginning of the solution 
procedure, in the term of percentage of the initial crack length, and unchanged kept during the 
rest of calculation. It is worth to notice that selection of the crack length increment value 
depends on initial crack length and numerical grid density as well. Also, with decreasing of 
the growth increment it is recommended to refining the grid ofelements. 

6 NUMERICAL EXAMPLES 

In this section, we present several exanlples of calculation of stress intensity factors in case 
of crack under the assumption of plane strain and plane stress two-dimensional elasticity. We 
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begin with a simple example of an edge crack to demonstrate the robustness of the above 
technique, and then present results for more complicated geometries. The results obtained 
with the P AK program will also be compared with results obtained by using the COSMOS 
program. 

6.1 Plate with inclined crack edge 

In this example we determine the stress intensity factor for both modes of fracture 
(opening K[ and shearing KI/) for a rectangular plate, with an inclined crack edge subjected 

to uniform uniaxial tensile pressure at the two ends. 
" tttfttttt 

(j =lpsi 

h = 2.5 in 

W=2.5in"I ", 
a =lin 

E =30x 106 psi 

v =0.3r':~ 
tP =45' 

Thickness =1in 

Figure 3: Plate with inclined crack edge 

J.ml 
7_~? 

~.?)~< -

Figure 4: Domain integration for J-ED! and stress field 
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The full part has to be modeled since the model is not symmetric with respect to the crack. 
There is no restriction in our FE models, so that mesh caT! be eit.~er synunetric or non
symmetric with respect to the crack. Fig. 4) shows the first and second region of the 
integration for equivalent domain integral. 

Results obtained by using J-EDI integral, incorporated in PAK software, are compared 
with results carried out with COSMOS J-contour integral and are shown in Table 1. Also, 
both sets ofthe numerical results are compared with the reference theoretical values. 

Kr(N/A %) Ku(N/A %) 
Reference 1.85 0.88 

8-node Element Path 1 1.877 (1.4%) 0.871 (1.0%) 
PAK Path 2 1.907/3.0%) 0.907 (3.0%) 
8-node element Path 1 1.80 (2.7%) 0.872 (0.9%) 
COSMOS Path 2 1.79j3.2%) 0.874 (0.6%) 

Table 1 : Comparison of results 

In order to present robustness of the J-EDI procedure, that is built into the PAK software, 
the above example was used with different radii rd of the integration domain and the results 

are shown in Table 2. Radius rd was varied from 0.5% a to 90%a, where a denotes crack 

length. It can be concluded from the Table 2 that the results are insensitive to the choice of the 
J-integral domain integration radius. 

rd 5 15 25 35 45 55 65 75 85 90 
(%of a) 

KI 1.810 1.864 1.807 1.877 1.906 1.9075 1.9071 1.9089 1.929 1.931 
N/A(%) 2.1 0.75 2.3 1.4 3.0 3.1 3.08 3.20 4.20 4.37 

Table 2 : Values of the factor KI for different domain integration radius 

It can be seen from the results presented that the error (N/A%) is small, even with a 
unsymmetrical grid with respect to the crack. 

6.2 Life assessment for steam turbine housing (2-D analysis) 

In this example12•13, the stress intensity factor of the crack located in the steam turbine 
housing is calculated. After generating 2-D FE model of the lower housing part together with 
insulation, the following steps were carried out: 

• 	 Calculation of the temperature field in nominal regime as well as the corresponding 
stress field; 

• 	 Calculation of the stress and deformation fields of the turbine for different crack 
lengths (20-75 mm); 

• 	 Analysis of the influence of the crack length on the corresponding stress field as well 
as on the stress intensity factor; 
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For the purpose of calculation of the temperature field, 2-D grid consisted of 4400 8-nodes 
elements. Generated grid was comprised the space ofthe turbine housing a.l1d insulation. 
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Figure 5: a) 2D model for calculation ofthe temperature field; b) Temperature field 
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Figure 6: Effective stress field for crack length 30 mm 

In Fig. 5) the stress field induced by temperature and internal pressure is shown. The 
effective stress for 2-D turbine model without insulation j for the crack length 30 ll1Ill, IS 

shown in Fig. 6). 

141.1 ..... 

12J.S•••• 

. S2.934'.' 

3::1.292'" 

11.8::1•••• 

-.....768S 

Fig. 7) shows the relationship between stress intensity factor KI and crack length. It can be 
seen from Fig. 7) that by increasing the crack depth from 20 mm to 40 nun, the stress 
intensity factor increases for 30%. Also, with increasing of the crack length over 50 nun, the 
stress intensity factor increases more rapidly. 
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Figure 7: Relationship between stress intensity factor Kl and crack length 
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6.2 Life assessment for steam turbine housing (3-D analysis) 

In this exa.-np1e12,13 a 3-D analysis of the turbine housing is carried out. Using the original 
project documentation, 3-D geometrical model ofthe turbine is generated. In that 3-D object, 
the crack with different lengths (90 - 375 mm) and depth (20 - 40 mm) are assumed and 
modeled. The calculations are performed to investigate the influence of the crack length and 
crack depth on the value of maximum effective stress, as well as on the value of stress 
intensity factor. Lower part of the turbine housing has an axial plane of symmetry so that the 
2-D model corresponds to the cross-section ofthat plane and the solid body ofthe housing. 

For calculation of the temperature field, we used boundary conditions of thermal 
conduction according to Fig. 5). In order to reduce the number ofelements in the 3-D grid, the 
critical quarter of the turbine is modeled. It is worth to emphasize that the cracks are located 
in that quarter as well as the steam intake with sharp edges that induce the stress 
concentration. In Fig. 8) shown the 3-D model. The calculated relationship between maximum 
effective stress and crack length for different crack depth is shown in Fig. 9). 

Figure 8: 3-D model 
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Figure 9: Relationship between maximum effective stress and crack length for different crack depth 

It can be seen from Fig. 9) that variation in crack length from 90 nun to 375 nun, for the 
crack depth constant, has no significant influence on the effective stress. On the other hand, 
increase of the crack depth, for the crack length constant; leads to increase in the effective 
stress % to %. shows the field of the effective stress. 

Figure 10; Field of the effective stress in vicinity of the crack (375x30 mm) 
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Dependence of the stress intensity factor on the crack length and crack depth is shown in 
Fig. 11). It is observed that increasing of the crack depth from 20 mm to 40 rnm, for the crack 
length constant, leads to increase of the stress intensity factor from 15% to 30 %. 
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Figure II: Relationship between stress intensity factor K) and crack length for different crack depth 

12 CONCLUSIONS 

Based on the equivalent domain integral (EDI) method, very robust, efficient and reliable 
procedure for estimation of stress intensity factors is obtained. Application of the J-EDI 
integral is suitable for applications because it relies on use of the domain integrals rather than 
contour integrals. 

In the X-FEM, the finite element method is enriched by adding special functions to the 
approximation using the notion of partition of unity. The crack was represented by H and NT 
functions. Discontinues function (H) was used to model the interior of the crack, and NT 
functions from the two-dimensional asymptotic displacement fields were used for the crack 
tip. These enrichment functions were added to the finite element approximation within the 
context displacement-based Galerkin formulation. A computational algorithm for crack 
growth using X-FEM was also presented. 

Obtained numerical results show a small influence of the choice of the J-integral domain 
integration on value of the stress intensity factor. In addition to relatively simple test cases, 
the analysis of the complex 3-D problems is presented. The analysis shows that a stable crack 
growth is predicted in nominal regime of the analyzed structure, while 2-D analysis shows a 
rapid increase of the stress intensity factor for increasing the crack depth over 50 mm. 
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