The Sixth Triennial International Conference

HEAVY MACHINERY

HM 2008 Proceedings

KRALJEVO
24 - 29 June 2008
THE SIXTH INTERNATIONAL TRIENNIAL CONFERENCE

HEAVY MACHINERY
HM 2008

PROCEEDINGS

ORGANIZATION SUPPORTED BY:

Ministry of Science, Republic of Serbia

THE SIXTH INTERNATIONAL TRIENNIAL CONFERENCE

HEAVY MACHINERY
HM 2008

PROCEEDINGS

PUBLISHER:
Faculty of Mechanical Engineering, Kraljevo

EDITORS:
Prof. dr Novak Nedić, mech. eng.

PRINTOUT:
Riža d.o.o., Kraljevo

TECHNICAL COMMITTEE

M.Sc. Nebojša Bogojević
M.Sc. Ljubiša Dubonjić
M.Sc. Slobodan Ivanović
M.Sc. Rade Karamarković
M.Sc. Miljan Marašević
M.Sc. Goran Marković
M.Sc. Goran Miodragović
M.Sc. Aleksandra Petrović
Bojan Beloica
Mišo Bjelić
Zoran Bogićević
Slobodan Bukarica
Miljan Veljović
Milorad Stambolić
Nebojša Zdravković

No. of copies: 200

REVIEWS:
All papers have been reviewed by members of scientific committee
CONFERENCE CHAIRMAN

Prof. dr Novak Nedić, FME Kraljevo

CHAIRMAN OF PROGRAM COMMITTEE

Prof. Dr Milomir Gašić, FME Kraljevo

MEMBERS

1. Prof. Dr M. Alamoreanu, TU, Bucharest, Romania
2. Prof. Dr S. Arsovski, FME Kragujevac, Serbia
3. Prof. Dr D. Atmadzhoava, VTU "Todor Kableskhov" Sofia, Bulgaria
4. Prof. Dr A. Babić, FME Kraljevo, Serbia
5. Prof. Dr H. Bogdevicius, Technical University, Vilnius, Lithuania
6. Prof. Dr A. Bruja, TU, Bucharest, Romania
7. Prof. Dr Z. Bučevac, FME Belgrade, Serbia
8. Prof. Dr A. Bukvić, FME East Sarajevo, Bosnia and Herzegovina
9. Prof. Dr V. Čović, FME Belgrade, Serbia
10. Prof. Dr M. Dedić, FME Kraljevo, Serbia
11. Prof. Dr R. Đurković, FME Podgorica, Montenegro
12. Prof. Dr Lj. Djordjević, FME Kraljevo, Serbia
13. Prof. Dr K. Ehmann, Northwestern University, Chicago, USA
14. Prof. Dr A. Emeljanova, HGTUSA Harkov, Ukraine
15. Prof. Dr I. Filonov, MGTU Minsk, Belorus
16. Prof. Dr C. Fragaussa, University of Bologna, Italy
17. Prof. Dr V. Jovišević, FME Banja Luka, Bosnia and Herzegovina
18. Prof. Dr Z. Jugović, Technical Faculty Cacak, Serbia
19. Prof. Dr V. Karamarković, FME Kraljevo, Serbia
20. Prof. Dr M. Karashin, Demirel University, Istanbul, Turkey
21. Prof. Dr I. Kiričenko, HNADU Kiev, Ukraine
22. Prof. Dr M. Kostic, Northern Illinois University, DeKalb, USA
23. Prof. Dr E. Kudrjavcev, MGSU, Moscow, Russia
24. Prof. Dr Lj. Lukić, FME Kraljevo, Serbia
25. Prof. Dr Z. Marinković, FME Nis, Serbia
26. Prof. Dr N. Meščerin, MGSU, Moscow, Russia
27. Prof. Dr N. Nenov, VTU "Todor Kableskhov" Sofia, Bulgaria
28. Prof. Dr V. Nikolić, FME Nis, Serbia
29. Prof. Dr E. Nikolov, Technical University, Sofia, Bulgaria
30. Prof. Dr I. Nikulin, VGASU, Voronez, Russia
31. Prof. Dr M. Ognjanović, FME Belgrade, Serbia
32. Prof. Dr M. Pavičić, FME Kraljevo, Serbia
33. Prof. Dr Z. Petković, FME Belgrade, Serbia
34. Prof. Dr D. Petrović, FME Kraljevo, Serbia
35. Prof. Dr R. Petrović, FME Kraljevo, Serbia
36. Prof. Dr J. Polajnar, BC University, Prince George, Canada
37. Prof. Dr S. Radović, FME Kraljevo, Serbia
38. Prof. Dr V. Račičević, FME Kosovska Mitrovica, Serbia
39. Prof. Dr M. Rajović, FME Kraljevo, Serbia
40. Prof. Dr R. Rakanović, FME Kraljevo, Serbia
41. Prof. Dr M. Stefanović, FME Kragujevac, Serbia
42. Prof. Dr Lj. Tanović, FME Belgrade, Serbia
43. Prof. Dr S. Trifunović, FME Kraljevo, Serbia
44. Prof. Dr M. Vesković, FME Kraljevo, Serbia
45. Prof. Dr J. Vladić, Faculty of Technical Sciences, Novi Sad, Serbia
46. Prof. Dr M. Vukičević, FME Kraljevo, Serbia
47. Prof. Dr K. Weinert, University of Dortmund, Germany
ORGANIZING COMMITTEE

Chairman: Prof. Dr Ljubomir Lučić, FME Kraljevo

Members: Prof. Dr Arandjel Babić, FME Kraljevo
Doc. Dr Radovan Bulatović, FME Kraljevo
Doc. Dr Mirko Djapić, FME Kraljevo
Doc. Dr Zoran Petrović, FME Kraljevo
Doc. Dr Dragan Pršić, FME Kraljevo
Doc. Dr Mile Savković, FME Kraljevo
Doc. Dr Tomislav Simović, FME Kraljevo
Doc. Dr Zlatan Šoškić, FME Kraljevo
M.Sc. Nebojša Bogojević, FME Kraljevo
M.Sc. Snežana Ćirić-Kostić, FME Kraljevo
M.Sc. Ljubiša Dubonjić, FME Kraljevo
M.Sc. Zoran Glavčić, FME Kraljevo
M.Sc. Slobodan Ivanović, FME Kraljevo
M.Sc. Rade Karamarković, FME Kraljevo
M.Sc. Ljubica Lalović, FME Kraljevo
M.Sc. Miljan Marašević, FME Kraljevo
M.Sc. Goran Marković, FME Kraljevo
M.Sc. Goran Miodragović, FME Kraljevo
M.Sc. Jovan Nešović, FME Kraljevo
M.Sc. Radovan Nikolić, FME Kraljevo
M.A. Natasa Pavlović, FME Kraljevo
M.Sc. Slaviša Šalinić, FME Kraljevo
Mišo Bjelić, FME Kraljevo
Zoran Bogičević, FME Kraljevo
Aleksandra Petrović, FME Kraljevo
Branko Radičević, FME Kraljevo
Miljan Veljović, FME Kraljevo
Nebojša Zdravković, FME Kraljevo
PREFACE

The Faculty of Mechanical Engineering Kraljevo has been traditionally organizing the international scientific conference devoted to heavy machinery every three years. The VI International Scientific Conference HM 2008 is considering modern methods and new technologies in the fields of design in machinery, production technologies, urban engineering and QMS through thematic sessions for the purpose of sustainable competitiveness of economic systems. Modern technologies are exposed to fast changes at the global world level so that their timely application both in large industrial systems and in medium and small enterprises is of considerable importance for the entire development and technological progress of economy as a whole.

The VI International Scientific Conference Heavy Machinery HM 2008 is a place for exchange of experiences and results accomplished in domestic and foreign science and practice, with the goal to indicate directions of further development of our industry on its way toward integration in European economic trends. Exchange of experiences between our and foreign scientific workers should contribute to extension of international scientific-technical collaboration, initiation of new international scientific-research projects and broader international collaboration among universities.

The papers which will be presented at this Conference have been classified into three thematic fields. In the first thematic field: Machine Building Design, the scientific-research issues refer to:

A. Automatic Control and Fluid Technique
B. Earth-Moving and Transportation Mechanization
C. Railway Engineering
D. Thermotechnique, Environment Protection and Urban Engineering
E. Mechanical Design and Mechanics
F. Production Technologies, Material Application and Entrepreneurial Engineering and Management
G. Computer-Integrated Processes and Designing of Machining Processes

Within this Conference, a round table with the topic “Energy Efficiency in Heavy Machinery” will be held. The aim is to open a scientific discussion on this actual problem in industry.

The sponsorship by the Ministry of Science of the Republic of Serbia is the proper way to promote science and technology in the area of mechanical engineering in Serbia.

On behalf of the organizer, I would like to express our thanks to all organizations and institutions that have supported this Conference. I would also like to extend our thanks to all authors and participants from abroad and from our country for their contribution to the Conference. And last but not the least, dear guests and participants in the Conference. I wish you a good time in Kraljevo – Mataniška Banja and see you again at the Seventh Conference, in three years.

Kraljevo, 19 June 2008

Conference Chairman,

Prof. Dr Novak Nedić, mech eng.
CONTENTS

PLENARY SESSION

Vladimir Milačić, Miloš Milačić
DESIGN METHODOLOGY FOR TECHNOLOGICAL PLATFORMS P.1

Евгеній Михайлович Кудрявцев
МОДЕЛИРОВАНИЕ, ПРОЕКТИРОВАНИЕ И РАСЧЕТ В СРЕДЕ КОМПАС-3D P.5

Евгеній Михайлович Кудрявцев
СПЕЦИАЛИЗИРОВАННЫЕ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ В СРЕДЕ КОМПАС-3D P.9

Novak Nedić, Ljubomir Lukić, Radovan Bulatović, Dragan Petrović
THE FACULTY OF MECHANICAL ENGINEERING KRALJEVO IN THE EUROPEAN STREAM OF INTEGRATION AND TRANSITION OF THE INDUSTRY P.13

SESSION A: AUTOMATIC CONTROL AND FLUID TECHNIQUE

Vojislav Filipović, Novak Nedić, Dragan Pršić, Ljubiša Dubenjić
ENERGY SAVING WITH VARIABLE SPEED DRIVES A.1

Novak Nedić, Radovan Petrović, Saša Prodanović
LOADING COMPUTATION OF SLIDING CONTACTS BETWEEN VANE AND HOUSING OF THE VANE PUMP A.7

Adrian Bruja, Marian Dima, Cătălin Frâncu
DYNAMIC MODELING OF THE MECHANISM WITH BARS BELONGING TO THE CONSTRUCTION UNIVERSAL MOBILE ROBOT WITH 7 DEGREES OF FREEDOM A.13

Novak Nedić, Ljubiša Dubenjić
MODELING AND SIMULATION OF A PUMP-CONTROLLED MOTOR WITH LONG TRANSMISSION LINES A.17

Radovan Petrović, Mire Savković, Petar Ivanović, Zoran Glavčić
EXPERIMENTAL VERIFICATION OF MATHEMATICAL MODELING OF PARAMETERS OF VANE PUMP WITH DOUBLE EFFECT A.23

Radovan Petrović, Mire Savković, Petar Ivanović, Zoran Glavčić
EXPERIMENTAL RESEARCH OF CHARACTERISTIC PARAMETERS OF HYDRODYNAMIC PROCESSES IN A PISTON AXIAL PUMP A.29

Dragan Pršić, Novak Nedić, Arandel Babić
XML SPECIFICATION OF HYDRAULICS COMPONENTS A.35

Ioan Bărdescu, Cristiana-Gabriela Popescu-Ungureanu, Amelitta Legundi
SOME EXPERIMENTAL DETERMINATIONS WITH SAND-BLASTING MOBILE UNIT A.39

Dragoslav Janošević, Boban Andelković, Goran Petrović
HYDROSTATIC TRANSMISSIONS FOR MOVEMENT OF MOBILE MACHINES ON WHEELS A.45
Dragoljub Vujic
HEALTH MONITORING AND PROGNOSTIC SENSORS APPLIED IN MECHANICAL AND ELECTRONIC SYSTEMS

Vojislav Filipovic
EXPONENTIAL STABILITY OF NONLINEAR HYBRID SYSTEMS

Mihajlo J. Stojcic
CONTROL ALGORITHMS OF EXPONENTIAL PRACTICAL TRACKING OF HYBRID SYSTEMS

Slobodan Savić, Branko Obrovic, Milan Despotovic
IONIZED GAS BOUNDARY LAYER ON THE POROSITY WALL OF THE BODY WHOSE ELECTROCONDUCTIVITY IS A FUNCTION OF THE LONGITUDINAL VELOCITY GRADIENT

SESSION B: EARTH MOVING AND MINING MACHINES AND TRANSPORTATION SYSTEMS

Igor Stepanovich Surovicev, Pavel Ivanovich Nikulin, Roman Sergeevich Solodov, Vitaliy Leonidovich Tomin
РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ТЯГОВЫХ II ТОПЛИВНЫХ ПОКАЗАТЕЛЕЙ ОДНООСНОГО КОЛЕСНОГО ДВИЖИТЕЛЯ

Pavel Ivanovich Nikulin, Vladimir Aleksandrovich Nyliv, Aleksandr Sergeevich Kryjak
ПРЕОБРАЗОВАНИЕ ПРИЦЕПНОГО СКРЕПЕРНОГО АГРЕГАТА В ПОЛУПРИЦЕПНОЙ

Vladimir Aleksandrovich Nyliv, Pavel Ivanovich Nikulin, Elena Andreevna Nikulina
ИССЛЕДОВАНИЯ ИЗМЕНЕНИЯ СЦЕПНОГО ВЕСА ТЯГАЧЕЙ СКРЕПЕРНЫХ АГРЕГАТОВ

Mihail Alekseyevich Stepanov
ОСНОВЫ СОЗДАНИЯ КРАНОВ-МАНИПУЛЯТОРОВ ДЛЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ

Ф.К. Klaasenov
МЕТАСИСТЕМНЫЙ ПОДХОД К ПРОЕКТИРОВАНИЮ СРЕДСТВ МЕХАНИЗАЦИИ СТРОИТЕЛЬСТВА

Ihna Anatolyevna Emeljanova, Vladimir Vladimirovich Blazhko, Olya Valeryevna Dobroходова
ИСПОЛЬЗОВАНИЕ ТРЕХВАЛЬНОГО БЕТОНОСМЕСИТЕЛЯ ДЛЯ ПРИГОТОВЛЕНИЯ МАЛОПОДВИЖНЫХ БЕТОННЫХ СМЕСЕЙ

Igor Georgievich Kirichenko
EVALUATING THE LOADS ON BULLDOZER UNDERCARRIAGE UNDER LONGITUDINAL TRIM
FACULTY OF MECHANICAL ENGINEERING KRALJEVO
UNIVERSITY OF KRAGUJEVAC
KRALJEVO – SERBIA

Mircea Alamarceanu
MODELING THE BEHAVIOR OF TOWER CRANES UNDER SEISMIC STRAIN B.31

Polidor Bratu
THE ANALYSIS OF THE DYNAMIC LOADS DUE TO THE VIBRATIONS
GENERATED BY THE DISPLACEMENT OF FRONT LOADERS B.35

Radan Durković, Milanko Damjanović
LIFETIME ESTIMATION OF THE LIFT TRANSMISSION POWER SYSTEM
ELEMENTS B.41

Milomir Gašić, Mile Savković, Goran Marković, Nebojša Zdravković
ANALYSIS OF CALCULATION METHODS APPLIED TO THE RINGS OF PORTAL
CRANE B.47

Zoran Petković, Vlada Gašić, Srdan Bošnjak, Nenad Zrnčić
LOADING CAPACITIES CURVES FOR HE-A/B-SECTION RUNWAY BEAMS
ACCORDING TO BOTTOM FLANGE BENDING B.51

Nenad Zrnčić, Srdan Bošnjak, Vlada Gašić
APPLICATION OF MOVING LOAD PROBLEM IN DYNAMIC ANALYSIS OF
UNLOADING MACHINES WITH HIGH PERFORMANCES B.57

Jovan Vladić, Anto Gajić, Radomir Đokić, Dragan Živanić
CHOICE OF OPTIMAL TRANSPORTATION MECHANISATION AT OPEN PIT B.63

Jovan Vladić, Dragan Živanić, Radomir Đokić, Anto Gajić
ANALYSIS OF MATERIAL FLOWS AND LOGISTICS APPROACH IN DESIGN OF
MATERIAL HANDLING SYSTEMS B.69

Zvonimir Jugović, Radomir Slavković, Milomir Gašić, Marko Popović
CAD-CAM-CAE TECHNOLOGIES USED IN THE DESIGN OF BUCKET WHEEL
EXCAVATOR CUTTING TEETH B.73

Zoran Marinković, Danijel Marković, Dragan Marinković
PLANNING, MODELING, SIMULATION AND ANALYSIS OF STORAGE PROCESSES B.77

Milomir Ćupović
THE IMPORTANCE OF RESEARCH OF LOCAL-SCOPE PHENOMENA WITHIN
SINGLE-ROPE CABLEWAYS B.83

Goran Bojančić, Milosav Georgijević, Vladimir Bojančić
OPTIMISATION OF THE LIFE TIME OF THE CONTAINER CRANES B.87

SESSION C: RAILWAY ENGINEERING

Ranko Rakanović, Dragau Petrović, Zlatan Šoškić, Nebojša Bogojević
IMPROVEMENT IN SUSPENSION SYSTEMS OF FREIGHT WAGONS C.1

Nencho G. Renov, Emil N. Dimitrov, Petyo M. Piskulev
EQUIPMENT AND METHODS TO TAKE DOWN CHARACTERISTICS OF PRESSED-IN ELEMENTS OF RAILWAY WHEEL AXLES C.5
Emil N. Dimitrov, Nencho G. Nenov, Georgi D. Geshev, Toma G. Ruzhekov
A METHOD OF EXPERIMENTAL DETERMINING STOCHASTIC PARAMETERS OF TRACK DISTURBANCE ON A LOCOMOTIVE WITH MOTION
C.9

Dobrinka Borisova Atmadzhova
A MODEL IN THE STUDIES ACTIVE STEERING ROTATION WHEELSETS
C.13

Dobrinka Borisova Atmadzhova
SIMULATION AND ANALYSIS IN ACTIVE STEERING OF INDEPENDENTLY ROTATING WHEELSETS
C.17

Branislav Gavrilović, Rade Vasiljević, Zoran Andjić
COMPUTER ALGORITHM FOR DETERMINING INFLUENCE OF TRACTION CURRENT ON COEFFICIENT OF FRICTION AND CREEP FORCE FOR THE ELECTROTraction VEHICLE OF “SERBIAN RAILWAY”
C.23

Maria Slavova-Nocheva
INNOVATION AND INNOVATION POLICY IN THE TRANSPORT SYSTEM IN BULGARIA
C.29

Anna Dzhaleva-Chontkova
WAGON MANUFACTURING AND MAINTENANCE IN THE BALKANS
PART 1: BULGARIA AND SERBIA
C.33

Ivaylo Topalov, Margarita Georgieva
IMPLEMENTATION OF WIMAX TECHNOLOGY IN TRAIN COACH INTERNET SUPPLY
C.37

Daniela Todorova
ЭКОНОМИЧЕСКИЕ ОСОБЕННОСТИ В АНАЛИЗАХ ПО РАСХОДАМ И ПОЛЬЗАМ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ РАЗВИТИЯ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
C.41

Nebojša Bogojević, Zlatan Šoškić, Dragan Petrović, Ranko Rakanović
MATHEMATICAL MODEL FOR DETERMINATION OF TORSIONAL STIFFNESS OF THREE-AXLED WAGONS
C.45

Tomislav Simović, Nebojša Bogojević
TRANSPORTATION – POLICY, ECOLOGY, CULTURE
C.51

SESSION D: TERMOTECHNIQUE, ENVIRONMENT PROTECTION AND URBAN ENGINEERING

Rade Karamarković, Vladan Karamarković, Miljan Marašević
GAS COMPOSITION AND EXERGY EFFICIENCY DETERMINATION AT CARBON BOUNDARY POINT IN THE DOWNDRAFT BIOMASS GASIFICATION PROCESS
D.1

Ranko Rakanović, Milomir Gašić, Mile Savković, Nebojša Zdравковић
CONTRIBUTION TO THE NEW SOLUTION OF STEEL MULTI-STORREY DEMOUNTABLE CAR PARKS
D.7
Milan Bukumirović, Aleksandar Ćupić, Goran Marković
INTEGRATION OF THE KINEMATIC CHARACTERISTICS OF SORTING WITH AUTOMATIC MANAGING OF SORTING WHILE COMMISSIONING IN LOGISTIC CENTRES
D.11

Miodrag Velimirović, Vujislav Miltenović, Milan Banić
ANALYSIS AND DEFINITION OF CHARACTERISTICS OF WIND TURBINE POWER TRANSMISSION
D.17

Tomislav Simović, Branislav Dordević, Marko Gojić
NATURAL GAS – ENERGY, ECOLOGY
D.23

Anto Gajić, Dragan Živanić, Radonir Đokić
TYRES MAINTENANCE AT OPEN-PIT MINING AND THEIR LABELLING
D.31

Šefik M. Bajmak
MATHEMATICAL MODELS INDUSTRIAL OBJECT WHERE THERE IS AERATION, HEAT SOURCE AND BEGINNING HUMIDITY
D.39

Goran Marković, Milan Bukumirović, Aleksandar Ćupić, Zoran Bogićević
THE DECISION METHODOLOGY OF OPTIMAL LOCATION OF REGIONAL LOGISTIC CENTRE
D.45

Vladimir Stojanović, Rade Karamarković, Miljan Naravić
EXERGY EFFICIENCY OF A RADIATOR HEATING SYSTEM
D.51

E SESSION: MECHANICAL DESIGN AND MECHANICS

Milan Đedić, Milica Todorović
CALCULATION OF THE FREE END DEFORMATION AND SLOPE OF A CANTILEVER TRUSS IN DISTRIBUTED LOAD
E.1

Snežana Ćirić-Kostić, Milosav Ognjanović
RESTORABLE FREE VIBRATIONS COST BY GEAR TEETH IMPACTS
E.5

Radovan Bulatović, Mladen Šimović
KINEMATICAL ANALYSIS OF A QUICK-RETURN MECHANISM BY USING MATLAB
E.11
Radovan Bulatović, Aleksandar Nikolić
KINEMATICAL ANALYSIS OF A SIX-BAR MECHANISM BY USING MATLAB
E.17

Miloje Rajović, Dragan Dimitrovski, Vladimir Rajović
HYPOTHESIS ABOUT AMPLITUDES OF MECHANICAL AND ELECTRICAL OSCILLATIONS OF THE SECOND AND THE HIGHER ORDERS
E.23

Peter Hantel, Marijona Bogdevičius, Bronislovas Spruogis, Vytautas Turla, Arūnas Jakštas
RESEARCH OF PARAMETRIC VIBRATIONS OF DRIVE SHAFTS IN INDUCTION MACHINE
E.29

Vladimir Алексеевич Жулаи, Владимир Иванович Енин
ВЫДЕЛЕНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК УЗКОПОЛОСНОГО ПРОЦЕССА ДЛЯ ДИАГНОСТИРОВАНИЯ ЗУБЧАТЫХ ПЕРЕДАЧ
E.35
Adrian Bruja, Marian Dima, Cătălin Frâncu
DYNAMIC STUDY OF SELF-ERECTING CRANES BAR MECHANISM

Adrian Bruja, Marian Dima, Cătălin Frâncu
ORIENTATION MECHANISM OF THE 3D SCANNING OF BUILDING FACADES
(OBJECT RETRIEVING) ROBOT

Ivan Savić, Mihimir Jovanović
FREQUENCY RESPONSE OF AUTOMOTIVE WHEEL RIM UNDER IMPULS DYNAMIC LOAD

Predrag Mileić, Goran Petrović, Mihimir Jovanović, Milorad Burić, Petrović Nikola
EXPERIMENTAL – NUMERIC ANALYSIS OF DYNAMIC PROCESS HYDRO-ENERGETIC BREECHES PIPE

Milan Zeljković, Aleksandar Živković, Ljubomir Borojev
THERMAL-ELASTIC BEHAVIOUR NUMERICAL ANALYSIS OF THE HIGH SPEED MAIN SPINDLE ASSEMBLY

Miljan Veljović, Miljan Đedić
A STRUCTURAL OPTIMIZATION OF A CELLULAR PLATE MADE OF RECYCLED CORRUGATED CARDBOARD

Milica Todorović, Milan Đedić
A DEFORMATION ANALYSIS OF A SPATIAL TRUSS BEAM WITH TRIANGULAR CROSS-SECTION BY MEANS OF CONTINUUM MODELING

Uglača Bugarić, Dušan Petrović, Dušan Glišić
ANALYTICAL SOLUTION OF THE THREE-DIAGONAL, FIRST ORDER, LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS SYSTEM WITH CONSTANT COEFFICIENTS

Jovan Nešović
ANALYSIS OF PLATE SPRINGS TYPES AND PACKAGES TENSION FEATURES ACQUIRED BY WORK SIMULATION

F SESSION: PRODUCTION TECHNOLOGIES, MATERIAL APPLICATION AND ENTERPRENEURIAL ENGINEERING AND MANAGEMENT

Milan Kolarević, Mihimir Vukičević, Miso Bjelić, Braniko Radičević
MODEL OF MULTICRITERIA OPTIMIZATION USING COMPLEX CRITERIA FUNCTIONS

Braniko Radičević, Zoran Petrović, Milan Kolarević, Miodrag Đinić
THE ANALYSIS OF MODE, CONSEQUENCES AND CRITICALITY AT POTENTIAL FAILURES OF GEAR PUMP

Milan Kolarević, Ljubinko Cvjetković, Radiša Bošković
PARAMETRIC MODELLING OF MODULAR VAULT ROOMS
Desanka Polajnar, Jernej Polajnar, Ljubomir Lukić, Mirko Djapčić
COMPLEXITY CHALLENGES IN CAPS SYSTEMS AND PROMISES OF MULTI-AGENT TECHNOLOGY

Irina Vasilevna Dochevskaya, Elena Igorevna Davidenko
ПОВЫШЕНИЕ РАБОТОСПОСОБНОСТИ СВАРНЫХ КОНСТРУКЦИЙ ТРАНСПОРТНЫХ СРЕДСТВ

Predrag Janković, Miroslav Radovanović
EXPERIMENTAL INVESTIGATION AND MATHEMATICAL MODELING OF CUTTING SPEED BY ABRASIVE WATER JET

Vasiliy Ivanovich Meshenok, Elena Anatolyevna Nestereenko, Aleksandr Aleksandrovich Liapin, Diana Borisovna Glushkova
ВЛИЯНИЕ МАТЕРИАЛА ИНДЕНТОРА И НАГРУЗКИ НА ЗНАЧЕНИЯ ТВЁРДОСТИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Stanislav Evgen'yevich Seliyanov, Viktor Borisovich Kosolapov, Sergei Vladimirovich Litovka
МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ МИКРОНЕРВОСНОСТЕЙ ПОВЕРХНОСТЕЙ ТРЕНИЯ С УЧЕТОМ АДСОРБЦИОННОЙ ПЛЕНКИ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

Anatoly Petrovich Lyubchenko, Diana Borisovna Glushkova, Valentina Nikolaevna Tarabanova, Svetlana Nikolayevna Kuchma
ПЕРСПЕКТИВНЫЙ МЕТОД ИСПОЛЬЗОВАНИЯ ЭЛЛИПСОИДАЛЬНЫХ СПЛАВОВ В ПРИБОРАХ И ИЗДЕЛИЯХ ТЯЖЕЛОГО МАШИНОСТРОЕНИЯ

Anatoly Petrovich Lyubchenko, Vasiliy Ivanovich Meshenok, Natalia Alexeevna Lazazrova
УНИВЕРСАЛЬНАЯ И ИСТИННАЯ НАНОТВЁРДОСТЬ МАТЕРИАЛОВ

Vasilii Moshchenok, Irina Doschechkhina, Stanislav Bondarenko, Alexandr Lyapin
INDENTOR GEOMETRY INFLUENCE ON THE SIZE EFFECT AT DETERMINATION OF HARDNESS

Vasiliy Ivanovich Meshenok, Natalia Alexeevna Lazazrova, Olga Nikolaevna Timchenko
ОПРЕДЕЛЕНИЕ УНИВЕРСАЛЬНОЙ И ИСТИННОЙ НАНОТВЁРДОСТИ ДЛЯ РАЗЛИЧНЫХ МАТЕРИАЛОВ

Lyudmila Leonidovna Kostina
ОПРЕДЕЛЕНИЕ ВЛИЯНИЯ СПОСОБА ПОЛУЧЕНИЯ И ОБРАБОТКИ ЧУГУНА НА ИЗМЕНЕНИЕ ЕГО ИСТИННОЙ И УНИВЕРСАЛЬНОЙ

Svetislav Lj. Marković, Dragan M. Erić
TECHNOLOGICAL SUITABILITY OF SHAPING VITAL MACHINERY PARTS MANUFACTURED BY COMPRESSION PROCESSING
G SESSION: COMPUTER-INTEGRATED PROCESSES AND DESIGN OF MACHINING PROCESSES

Mirko Djapić, Ljubomir Lučić, Slavko Arsovski
INTEGRATED MANAGEMENT SYSTEMS - REQUIREMENT OF CONTEMPORARY BUSINESS PRACTICES

Slobodan Ivanović, Ljubomir Lučić
DATABASE DESIGN FROM TECHNOLOGICAL AND KINEMATIC PARAMETERS OF NC PROGRAM FOR PRODUCTION IN FLEXIBLE MANUFACTURING SYSTEM

Zoran Radosavljević, Ljubomir Lučić
MODEL FOR REVITALIZATION OF INDUSTRIAL MANUFACTURING OF POWER PLANT EQUIPMENT - ABS HOLDINGS CASE STUDY

Milun Dukanac, Branko Nikolić, Rajko Spasojević, Bojan Šekularac
THE LASER ADJUSTMENT METHOD ALIGNMENT OF DRIVE SHAFTS IN OPEN PIT „KOLUBARA“

Radomir Slavković, Ivan Miličević, Marko Popović, Nikola Bošković
AUTOMATIZATION OF CONTROLLING FUNCTIONS THE DRIVE SYSTEM OF PRESS ECCENTRIC WITH CONVENTIONAL DIRECTION

Vladimir Zeljčević, Mirko Djapić
NEW DIRECTIVE 2006/42/EC ON MACHINERY - SCOPE

Goran Vujčić, Ljubomir Lučić
IMPLEMENTING EXTERNAL PROGRAM IN MODULAR PLUGIN ARCHITECTURE FOR MONITORING NUMBER OF CURRENTLY LOGGED-IN USERS IN COMPUTER NETWORKS

Marina Pljakić, Arandjel Babić, Nemanja Ilić, Aleksandra Petrović
MODELLING OF THE ADDITIONAL AXIS OF THE MACHINE TOOL IN ORDER TO IMPROVE TECHNOLOGICAL PROCESS OF THE PRODUCTION OF THE PART
INTERNATIONAL Triennial Conference Heavy Machinery (6; 2008; Kraljevo)
[organized by] University of Kragujevac, Faculty of Mechanical Engineering,
Kraljevo; [editor Novak Nedic]. – Kraljevo: Faculty of Mechanical Engineering, 2008
(Kraljevo: Riža). – 1 knj. (razl. Pag.): ilstr.; 29 cm

1. Faculty of Mechanical Engineering (Kraljevo)
 a) Машиноградња – Зборници
 b) Производно машинство – Зборници
 c) Транспортна средства – Зборници
 c) Шинска возила – Зборници

COBISS.SR-ID 149485324
IONIZED GAS BOUNDARY LAYER ON THE POROSITY WALL OF THE
BODY WHOSE ELECTROCONDUCTIVITY IS A FUNCTION OF THE
LONGITUDINAL VELOCITY GRADIENT

S. Savić, B. Obrović, M. Despotović

Abstract: Planar flow of the ionized gas in the boundary layer in the conditions of the so-called equilibrium ionization is studied. The contour of the body within the fluid is porous. The ionized gas is under the influence of the outer magnetic field which is normal to the contour of the body. The electroconductivity of the ionized gas is assumed to be a function of the longitudinal velocity gradient. In the paper, the governing equation system is with suitable transformations brought to a generalized form and numerically solved in the four-parametric approximation. Based on the obtained numerical solutions diagrams of important physical values and characteristics of the boundary layer are drawn. Adequate conclusions are also made.

Key words: boundary layer, ionized gas, ionized gas electroconductivity, porous contour, general similarity method, porosity parameter.

1. INTRODUCTION

This paper presents a detailed study of a complex ionized gas flow in the boundary layer along a porous contour. As known, at supersonic flow velocities the gas dissociation is followed by ionization. Hence, the gas becomes electroconductive. When the ionized gas is exposed to a magnetic field, an electric flow is formed in the gas. Due to this flow, the so-called Lorentz force and Joule heat generate. As a result, additional terms, which contain the gas electroconductivity, appear in the governing equations.

The most significant results in investigation of the dissociated gas flow are given in the book by Dorrance [1]. Loitsianski and the members of his school [2, 3, 4, 5] performed a detailed investigation of the dissociated gas flow in the boundary layer. Investigators of the so-called Belgrade School of the Boundary Layer led by Saljnikov [6, 7, 8] accomplished significant results in the field of dissociated gas flow in the boundary layer. In the works of Boricic et al [9, 10, 11] and Ivanovic [12], MHD boundary layer on a porous and nonporous contour of a body within the fluid is studied. In the paper [2], the ionized gas flow in the boundary layer along a flat plate in the presence of a magnetic field is studied. The paper [13] studies the ionized gas flow in the boundary layer along a nonporous body and papers [14, 15] study the ionized gas flow along a porous body of an arbitrary shape. In these papers, different electroconductivity variation laws are used.

The presented paper gives the results of investigation of the ionized gas flow in the boundary layer along a porous wall in the case when the electroconductivity is a function of the longitudinal velocity gradient. The ionized gas of the same physical characteristics as in the main flow is injected, i.e. ejected with the velocity \(v_{w}(x) \). The outer magnetic field is normal to the wall of the body within the fluid. According to [2], it is considered that the power of this field is \(B_{m} = B_{m}(x) \) and that the magnetic Reynolds number is very small. Therefore, in the case of the ionized gas flow in the magnetic field, the governing equation system of steady planar laminar boundary layer with the corresponding boundary conditions, according to [2], takes the following form:

\[
\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) = 0, \\
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \frac{dp}{dx} + \mu \frac{\partial u}{\partial y} - \sigma B_{m}^{2} u, \\
\rho u \frac{\partial h}{\partial x} + \rho v \frac{\partial h}{\partial y} = u \frac{dp}{dx} + \mu \left(\frac{\partial u}{\partial y} \right)^{2} + \frac{\partial}{\partial y} \left(\frac{\mu}{Pr} \frac{\partial h}{\partial y} \right),
\]

\[
\sigma = \sigma_{0} \frac{v_{0}}{u_{c}} \frac{\partial u}{\partial y}, \quad (\sigma_{0}, v_{0} = \text{const.}).
\]

If the pressure is eliminated from the system (1), based on the conditions for the outer edge of the boundary layer, the following equation system is obtained:

\[
\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) = 0, \\
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \mu \frac{\partial u}{\partial y} - \sigma B_{m}^{2} u, \\
\rho u \frac{\partial h}{\partial x} + \rho v \frac{\partial h}{\partial y} = u \frac{\partial u}{\partial y} + \mu \left(\frac{\partial u}{\partial y} \right)^{2},
\]

\[
\sigma = \sigma_{0} \frac{v_{0}}{u_{c}} \frac{\partial u}{\partial y},
\]

\[
\sigma_{0}, v_{0} = \text{const.}.
\]
and are determined with a characteristic boundary layer function on the wall of the body within the fluid remain the same as with the nonporous wall. For that reason, a new stream function \(\psi^*(s,z) \) is introduced with the relation:

\[
\frac{dZ^*}{ds} = \frac{F_{mp}}{u_e}.
\]

While deriving the momentum equation, the usual quantities are introduced: a parameter of the form \(f(s) = \frac{u'_c\Delta''^2}{v_0} = u'_c Z^{**} \), magnetic parameter \(g(s) \), a conditional displacement thickness \(\Lambda^* \), a conditional momentum loss thickness \(\Lambda''^* \), a shear stress at the wall of the body within the fluid \(\tau_w \), a nondimensional friction function \(\zeta(s) \), a nondimensional value \(H \) and a characteristic boundary layer function on the porous wall \(f_{mp} \). With the ionized gas flow, these quantities are defined with the relations:

\[
Z^{**} = \frac{\Delta''^*}{v_0}, \quad f(s) = f_1(s) = \frac{u'_c\Delta''^2}{v_0} = u'_c Z^{**},
\]

\[
g(s) = g_1(s) = u_e^{-1}N_vv_0^{1/2}Z^*\Delta^{1/2}, \quad N_v = \frac{\rho_0}{\rho_w}, \quad N,
\]

\[
N = \frac{\sigma_{0}B_m^2}{\rho_0}, \quad \Lambda^* = \int_{0}^{\infty} \left(\frac{\mu_c}{\rho} - u_e \right) ds,
\]

\[
\Lambda''^*(s) = \int_{0}^{\infty} \left(1 - \frac{u_e}{u_e} \right) dz, \quad \tau_w(s) = \left(\frac{\mu_c}{\rho} \right)_{y=0} = \frac{D_m\mu_w u_e}{\rho_0 \Delta''^* \zeta}, \quad \zeta(s) = \left[\frac{\partial (u/u)}{\partial (z/\Delta''^*)} \right]_{z=0},
\]

\[
H = \frac{\Lambda^*}{\Lambda''^*} ; \quad F_{mp} = 2(\zeta - (2 + H)f) + g - 2\Delta.
\]

Due to the porous wall of the body within the fluid, an addend appears in the momentum equation. Therefore, it is necessary to introduce a new parameter, the so-called porosity parameter \(\Lambda(s) \):

\[
\Lambda = \frac{u_0}{\mu_w} v_w \Delta''^* = \frac{V_w \Delta''^*}{v_0} = \Lambda(s)
\]

where \(\lambda \) is the thermal conductivity coefficient \(c_p \) - the specific heat of the ionized gas at a constant pressure.

In order to apply the general similarity method, it is very important that the boundary conditions and the stream function on the wall of the body within the fluid remain the same as with the nonporous wall. For that reason, a new stream function \(\psi^*(s,z) \) is introduced with the relation

\[
Q = \frac{\partial \mu}{\rho_w H_w}, \quad \Pr = \frac{\mu_c}{\lambda},
\]
\[\psi(s,z) = \psi_w(s) + \psi^*(s,z), \quad \psi^*(s,0) = 0 \quad (11)\]

where \(\psi(s,0) = \psi_w(s)\) denotes the stream function of the flow along the wall of the body within the fluid.

Applying the relation (11), the system (6) is transformed into the following equation system:

\[
\begin{align*}
\frac{\partial \psi^*}{\partial z} + \frac{\partial^2 \psi^*}{\partial s^2} &= \frac{\partial}{\partial s} \left(\frac{\partial^2 \psi^*}{\partial z^2} \right) - \frac{\sigma_0 B_m^2 \rho_0 \mu_0}{\mu_w} \frac{\partial^2 \psi^*}{\partial s \partial z} + \frac{\partial \psi_w}{\partial s} \frac{\partial \psi^*}{\partial z} + \frac{\partial \psi}{\partial s} \frac{\partial \psi^*}{\partial z}, \\
\frac{\partial \psi^*}{\partial s} &= \frac{\partial \psi}{\partial s}
\end{align*}
\]

where \(\psi^* = \psi - \psi_w\) is the newly introduced stream function and \(\psi = \psi_w\) is the wall stream function.

\[\begin{align*}
\frac{\partial \psi^*}{\partial z} + \frac{\partial^2 \psi^*}{\partial s^2} &= \frac{\partial}{\partial s} \left(\frac{\partial^2 \psi^*}{\partial z^2} \right) - \frac{\sigma_0 B_m^2 \rho_0 \mu_0}{\mu_w} \frac{\partial^2 \psi^*}{\partial s \partial z} + \frac{\partial \psi_w}{\partial s} \frac{\partial \psi^*}{\partial z} + \frac{\partial \psi}{\partial s} \frac{\partial \psi^*}{\partial z}, \\
\frac{\partial \psi^*}{\partial s} &= \frac{\partial \psi}{\partial s},
\end{align*}
\]

3. MATHEMATICAL MODEL

In order to derive the generalized boundary layer equations it is necessary to introduce new transformations from the very beginning:

\[s = s, \quad \eta(s,z) = \frac{u^b}{K(s)}z, \quad \psi^*(s,z) = u_e^{b/2} K(s) \Phi \left[\eta, \kappa, (f_k), (g_k), (\Lambda_k) \right], \quad h(s,z) = h_w h_n \left[\eta, \kappa, (f_k), (g_k), (\Lambda_k) \right] \quad (13)\]

where \(\eta(s,z)\) is the newly introduced transversal variable, \(\Phi\) - the newly introduced stream function and \(h\) - the nondimensional enthalpy. Some important quantities and characteristics of the boundary layer (10) can be written in the form of more suitable relations:

\[u = u_e \frac{\partial \Phi}{\partial \eta}, \quad \Lambda^*(s) = \frac{K(s)}{u_e^{b/2}} B(s), \quad B(s) = \int_0^\infty \frac{\partial \Phi}{\partial \eta} \left(1 - \frac{\partial \Phi}{\partial \eta} \right) d\eta, \quad (14)\]

\[\Lambda^*(s) = \frac{H}{A(s)}, \quad A(s) = \int_0^\infty \left(\frac{\rho_e}{\rho} - \frac{\partial \Phi}{\partial \eta} \right) d\eta, \quad \zeta = B \left(\frac{\partial^2 \Phi}{\partial \eta^2} \right) \eta = 0, \quad \int_0^\infty \frac{u_e^{b-1} ds}{B^2}.
\]

In the general similarity transformations (13), with the nondimensional functions \(\Phi\) and \(h\), we introduced a local parameter of the ionized gas compressibility \(\kappa = f_0\), a set of parameters of the form \(f_k\) of Loitsianski's type [3], a set of magnetic parameters \(g_k\) and a set of porosity parameters \(\Lambda_k\) [16] by means of the following expressions:

\[\kappa = f_0(s) = \frac{u_e^2}{2h_1}, \quad f_k(s) = \frac{u_e^{b-2} N_g^{(k-1)} v_{0,2}^1 Z^{s-k}}{ \Lambda_k}, \quad (15)\]

They present new independent variables that are used instead of the longitudinal variable \(s\).

The local compressibility parameter \(\kappa = f_0\) and the sets of parameters satisfy the corresponding simple recurrent differential equations of the form:

\[\frac{u_e}{u_e} f_1 d_k \frac{ds}{ds} = 2 \kappa f_1 = \theta_0, \quad \frac{u_e}{u_e} f_1 d_k \frac{ds}{ds} = (k-2) f_1 + k F_{mp} f_k + f_{k+1} = \theta_k, \quad \frac{u_e}{u_e} f_1 d_{g} \frac{ds}{ds} = \left(k-1 \right) f_1 + \left(2k-1 \right) F_{mp} g_k + g_{k+1} = \gamma_k, \quad \frac{u_e}{u_e} f_1 d_{A} \frac{ds}{ds} = \left(k-1 \right) f_1 + \left(2k-1 \right) F_{mp} \Lambda_k \quad (16)\]

Applying the similarity transformations (13) and (15) to the equation system (12), we obtain the following boundary layer equation system:

\[\begin{align*}
\frac{\partial}{\partial \eta} \left(\frac{\partial^2 \Phi}{\partial \eta^2} \right) &= \frac{a b^2 + (2 - b) f_1}{B^2} \frac{\partial^2 \Phi}{\partial \eta^2} + \frac{f_1}{B^2} \left(\frac{\partial \Phi}{\partial \eta} \right)^2 - \frac{g_k \frac{\partial \Phi}{\partial \eta} \frac{\partial \Phi}{\partial \eta} \frac{\partial \Phi}{\partial \eta}}{B^2 \eta^2} + \frac{\Lambda_k \frac{\partial^2 \Phi}{\partial \eta^2}}{B \eta^2} = 0, \quad (17)\]

where \(\Lambda_k\) are the porosity parameters for \(k = 1, 2, 3, \ldots\).
A.64

\[+ \sum_{k=1}^{\infty} \chi_k \left(\frac{\partial \Phi}{\partial \eta} \frac{\partial^2 \Phi}{\partial \eta^2} \right) \]

\[\frac{\partial}{\partial \eta} \left(\frac{Q \partial h}{Pr \partial \eta} \right) + \frac{aB^2 + (2-b)f}{2B^2} \Phi \frac{\partial^2 \Phi}{\partial \eta^2} - \frac{2\rho \partial \Phi}{B^2} \]

\[+ 2\kappa Q \left(\frac{\partial^2 \Phi}{\partial \eta^2} \right)^2 + 2\kappa g \phi \frac{\partial \Phi}{\partial \eta} \frac{\partial \phi}{\partial \eta} \]

\[+ \frac{1}{B^2} \sum_{k=0}^{\infty} \theta_k \left(\frac{\partial \Phi}{\partial \eta} \frac{\partial^2 \Phi}{\partial \eta^2} \right) + \frac{\Lambda_1}{\Phi \partial \eta} \]

The boundary conditions are:

\[\Phi = \frac{\partial \Phi}{\partial \eta} = 0, \quad \vec{h} = \vec{h}_w = \text{const.} \quad \text{for} \quad \eta = 0, \]

\[\frac{\partial \Phi}{\partial \eta} \rightarrow 1, \quad \vec{h} \rightarrow \vec{h}_w = 1 - \kappa \quad \text{for} \quad \eta \rightarrow \infty. \]

The transformed boundary conditions are:

\[\Phi = \frac{\partial \Phi}{\partial \eta} = 0, \quad \vec{h} = \vec{h}_w = \text{const.} \quad \text{for} \quad \eta = 0, \]

\[\frac{\partial \Phi}{\partial \eta} \rightarrow 1, \quad \vec{h} \rightarrow \vec{h}_w = 1 - \kappa \quad \text{for} \quad \eta \rightarrow \infty. \]

The generalized equation system represents a general mathematical model of the ionized gas flow along a porous wall of the body within the fluid for the assumed form of the electroconductivity variation law.

\[4. \text{NUMERICAL SOLUTION} \]

When the generalized equation system (17) with the boundary conditions (18) is numerically solved, a finite number of parameters should be adopted so that the solution is obtained in that parametric approximation. The equation system can be solved only with a relatively small number of parameters. If we assume that all the similarity parameters from the second one onward equal zero:

\[\kappa = f_0 \neq 0, \quad f_1 = f \neq 0, \quad g_1 = g \neq 0, \]

\[\Lambda_1 = \Lambda \neq 0; \quad f_2 = f_3 = \ldots = 0, \quad g_2 = g_3 = \ldots = 0, \quad \Lambda_2 = \Lambda_3 = \ldots = 0, \]

the obtained equation system is significantly simplified. Furthermore, when the generalization method is applied, the so-called localization is also performed. If we neglect derivatives per the compressibility, magnetic and porosity parameters, the equation system (17) is significantly simplified, and in a four-parametric three times localized approximation it has the following form:

\[\frac{\partial}{\partial \eta} \left(\frac{Q \partial^2 \Phi}{\partial \eta^2} \right) + \frac{aB^2 + (2-b)f}{2B^2} \Phi \frac{\partial^2 \Phi}{\partial \eta^2} + \]

\[+ \frac{f}{B^2} \left(\rho \partial \Phi \right)^2 - \frac{g}{B^2} \frac{\partial \Phi}{\partial \eta} \frac{\partial \phi}{\partial \eta} + \frac{\Lambda \partial \Phi}{\partial \eta} \]

\[= \frac{F_{mp}}{B^2} \left(\frac{\partial \Phi}{\partial \eta} \frac{\partial e}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \right). \]

\[\frac{\partial}{\partial \eta} \left(\frac{Q \partial^2 \Phi}{\partial \eta^2} \right) + \frac{aB^2 + (2-b)f}{2B^2} \Phi \frac{\partial^2 \Phi}{\partial \eta^2} - \]

\[- 2\kappa f \rho \partial \Phi \frac{\partial \phi}{\partial \eta} + 2\kappa Q \frac{\partial^2 \Phi}{\partial \eta^2} + 2\kappa g \frac{\partial \phi}{\partial \eta} \frac{\partial \phi}{\partial \eta} \]

\[+ \frac{\Lambda}{B} \frac{\partial \phi}{\partial \eta} = \frac{F_{mp}}{B^2} \left(\frac{\partial \Phi}{\partial \eta} \frac{\partial e}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \right). \]

The boundary conditions (18) remain unchanged.

In the equations of the system (20) the subscript 1 in some (first) parameters is left out. For the numerical integration of the obtained system of differential partial equations of the third order, it is necessary to decrease the order of the differential equations. Using [7]

\[\frac{u}{u_c} = \frac{\partial \Phi}{\partial \eta} = \Phi = \phi (\eta, \kappa, f, g, \Lambda), \]

we decrease the order of the differential equations of the system (20), so the system together with the boundary conditions comes to:

\[\frac{\partial}{\partial \eta} \left(\frac{Q \partial^2 \phi}{\partial \eta^2} \right) + \frac{aB^2 + (2-b)f}{2B^2} \phi \frac{\partial^2 \phi}{\partial \eta^2} - \]

\[- g \frac{\partial \phi}{\partial \eta} + \frac{\Lambda}{B} \frac{\partial \phi}{\partial \eta} = \frac{F_{mp}}{B^2} \left(\frac{\partial \phi}{\partial \eta} \frac{\partial e}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \right), \]

\[\frac{\partial}{\partial \eta} \left(\frac{Q \partial^2 \phi}{\partial \eta^2} \right) + \frac{aB^2 + (2-b)f}{2B^2} \phi \frac{\partial^2 \phi}{\partial \eta^2} - \]

\[2\kappa f \rho \frac{\partial \phi}{\partial \eta} + + 2\kappa Q \frac{\partial^2 \phi}{\partial \eta^2} + 2\kappa g \frac{\partial \phi}{\partial \eta} \frac{\partial \phi}{\partial \eta} \]

\[+ \frac{\Lambda}{B} \frac{\partial \phi}{\partial \eta} = \frac{F_{mp}}{B^2} \left(\frac{\partial \phi}{\partial \eta} \frac{\partial e}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \right); \]

\[\Phi = \phi = 0, \quad \vec{h} = \vec{h}_w = \text{const.} \quad \text{for} \quad \eta = 0, \]

\[\phi \rightarrow 1, \quad \vec{h} \rightarrow \vec{h}_w = 1 - \kappa \quad \text{for} \quad \eta \rightarrow \infty. \]

For the nondimensional function \(Q \) [15] and the density ratio \(\rho_c/\rho \) [4] that appear in the system (22), the following approximate formulae are used:

\[Q = Q(\vec{h}) = \left(\frac{\vec{h}}{\vec{n}} \right)^{1/3}, \quad \frac{\rho_c}{\rho} \approx \frac{\vec{h}}{1 - \kappa}. \]
The equation system (24) consists of two subsystems - dynamic (I) and thermodynamic (II).

For the concrete numerical solution of the equation system (22), i.e., the corresponding algebraic system, a program in FORTRAN program language has been written. It is based on the program used in the investigations [7]. Since Prandtl number depends little on the temperature, for air, it is assumed to be: $Pr = 0.712$. The constants a and b, according to [7], have optimal values: $a = 0.4408; b = 5.7140$.

As the equation system (22) is localized per the compressibility, porosity and magnetic parameters, these parameters have become simple parameters. Therefore, the equation system (22) is solved by the usual procedure starting from the value $f = 0.00$ (flat plate), for values of the parameters κ, g and Λ given in advance.

5. CONCLUSION

Only some of the results are presented in this paper in the form of diagrams based on which important conclusions are drawn:

- Regardless of the fact whether the ionized gas is injected into the main flow or ejected from it, at different cross-sections of the boundary layer, the nondimensional velocity u/u_e very quickly converges towards unity (Fig. 1).
- The magnetic field has a great influence upon the boundary layer characteristic F_{mp} (Fig. 2).
- The influence of the magnetic field on the nondimensional friction function ζ, and therefore on the boundary layer separation point, is especially pointed out (Fig. 3). By increasing the values of the magnetic parameter, the separation of the boundary layer is postponed.
- The porosity parameter Λ has a great influence on the nondimensional friction function ζ (Fig. 4). Consequently, this parameter has also a significant influence on the boundary layer separation point. It is noted that the injection of air, in accordance with the relation (10), postpones the separation of the ionized gas boundary layer because the separation point moves down the flow.
REFERENCES

Acknowledgement: The research was supported by the Ministry of Science and Environmental Protection of the Republic of Serbia Grant ON144022.