UNIVERSITY OF NIŠ
FACULTY OF MECHANICAL ENGINEERING

THE 2nd INTERNATIONAL CONFERENCE
MECHANICAL ENGINEERING IN XXI CENTURY

PROCEEDINGS

20-21. June 2013, Niš, Serbia
ORGANIZERS

UNIVERSITY OF NIŠ
FACULTY OF MECHANICAL ENGINEERING

WITH SUPPORT OF:
Ministry of Science and Technological Development

Chairman of the International conference
Prof. dr Vlastimir NIKOLIĆ, Dean
Faculty of Mechanical Engineering, Niš

SCIENTIFIC COMMITTEE

Prof. Dr.-Ing. Axel Gräser, Institute of Automation, University of Bremen, Germany
Prof. dr Goran Radenković, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Gradimir Ilić, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Dečan Ivanović, Mašinski fakultet Univerziteta Crne Gore, Crna Gora
Prof. dr Dragan Djurdjanović, Department of Mechanical Engineering, University of Texas at Austin, USA
Prof. dr Dragoša Nikodićević, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Dragoljub Đorđević, Mašinski fakultet Univerziteta u Nišu, Srbija, predsednik
Prof. dr Dragoljub Zivković, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Dušan Dolubović, Mašinski fakultet Univerziteta u Istočnom Sarajevu, Bosna i Hercegovina
Prof. dr Dušan Stamenković, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Emil Nikolov, Technical University of Sofia, Bulgaria
Prof. dr Karl Kuzman, Fakultet za strojništvo Univerza v Ljubljani, Slovenija
Prof. dr Lena Zentner, Technical University Ilmenau, Germany
Prof. dr Ljiljana Petković, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Ing. Ljubomir Dimitrov, Technical University of Sofia, Bulgaria
Prof. Dr.-Ing. habil. Manfred Zeln, Technische Universität Berlin, Deutschland
Prof. dr Marko Serafinov, Mašinski fakultet Skopje, Makedonija
Prof. dr Mihail Jovanović, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Miroslav Veneš, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia
Prof. dr Miroslav Radovanović, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Miroslav Trajanović, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Mladen Stojiljković, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Nenad Gubeljaš, Fakultet za strojništvo Univerza v Mariboru, Slovenija
Prof. dr Nenad D. Pavlović, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr. Niko Sanci, Fakulteta za strojništvo, Maribor, Slovenija
Prof. dr Peter Stankov, Technical University of Sofia, Bulgaria
Prof. dr Predrag Kojić, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Predrag Rajković, Mašinski fakultet Univerziteta u Nišu, Srbija
Prof. dr Radovan Kovačević, Southern Methodist University RCAM, USA
Prof. dr Sava Iančić, Faculty of Engineering, University "Ettore Majorana" of Resita, Romania
Prof. dr Slabodan Vukićević, Filozofski fakultet Univerziteta Crne Gore
Prof. dr Todor Neshkov, Technical University of Sofia, Bulgaria
Prof. dr Hervé Panetta, Université de Lorraine, Francuska
Prof. dr Valentin Nedelec, Faculty of Engineering, University of Bacău, Romania
ORGANIZING COMMITTEE

Prof. Dr Dragan Milčić, president
Prof. Dr Nenad T. Pavlović
Prof. Dr Melanija Mitrović
Prof. Dr Boban Andelković
Dr Predrag Janković, assistant professor
Dr Miroslav Mijajlović, assistant professor
Dragan S. Jovanović, teaching assistant
Živojin Stamenković, teaching assistant
Ivan Pavlović, teaching assistant
Marco Ignjatović, teaching assistant
Nikola Petrović, teaching assistant
Miloš Tasić
Srdan Mladenović
Vesna Grozdanović
Dušanka Nikolić
All the publications in this Proceedings have the authorship, whereas the authors of the papers carry entire responsibility for originality and content.
ENERGETICS AND PROCESS ENGINEERING

AKISMETRICAL IONIZED GAS BOUNDARY LAYER ON A POROUS WALL OF THE BODY OF REVOLUTION
BRANKO OBROVIC, SIGOBOAN SAVIC

APPLICATION OF PARAMETRIC METHOD TO THE SOLUTION OF UNSTEADY TEMPERATURE MHD BOUNDARY LAYER ON THE POROUS ARBITRARY SHAPE BODY
DRAGISA NIKODJEVIĆ, MUDRODA MICHEVSKI, ZVJONI STAMENKOVIĆ, ALEKSANDAR BORIČIĆ, MILOŠ KOČIĆ

HEAT AND MASS TRANSFER ON UNSTEADY MHD DYNAMIC, TEMPERATURE AND DIFFUSION BOUNDARY LAYER FLOW OVER A HORIZONTAL CIRCULAR CYLINDER
ALEKSANDAR BORIČIĆ, MILOŠ JOVANOVIĆ, BRANKO BORIČIĆ

FLOW AND HEAT TRANSFER OF ELECTROCONDUCTIVE FLUID IN THE PRESENCE OF UNIFORM MAGNETIC FIELD
ZVJONI STAMENKOVIć, DRAGISA NIKODJEVIć, DRAGAN ŽIVKOVIć, MILICA NIKODJEVIć

ANALYSIS OF WATER FLOW IN A LONG PIPELINE HYDROPOWER PLANT WITH PELTON TURBINE
DRAGIĆA MILenkoVIć, DRAGAN SVRKOćA, JELENA NIKODJEVIć

PRESSURE DROP CALCULATION OF TRANSPORT AIR IN RECTILINEAR PIPELINE SECTIONS IN THE HIGH PRESSURE PNEUMATIC CONVEYING
BOŽIDAR BOGDANOVIĆ, JASMINA BOGDANOVIć-JOVANOVIć, SASA MILANOVIć, ŽIVAN SPASIć

CONSIDERATIONS FOR HYDROPOWER DEVELOPMENT IN A GRAVITATIONAL WATER DISTRIBUTION SYSTEM
DRAGIĆA MILenkoVIć, BOŽIDAR BOGDANOVIć, MILICA NIKODJEVIć

EXPERIMENTAL MEASUREMENTS OF TURBULENT INTENSITY AND REYNOLDS STRESSES AROUND SMOOTH SPHERE AND SPHERE WITH DIMPLES
JASMINA BOGDANOVIć-JOVANOVIć, MILOŠ KOČIĆ, JELENA NIKODJEVIć

THERMAL NONUNIFORM CONDITIONS AND LOCAL DISCOMFORT
GRADIMIR ILIć, ŽANA STEVANOVIć, MICA VUKIć, PREDRAG ŽIVKOVIć, MLADEN TOMIć

STATIONARY METHOD ON SITE EVALUATION OF U-VALUE OF BUILDING ELEMENTS
ŽANA STEVANOVIć, GRADIMIR ILIć, MICA VUKIć, PREDRAG ŽIVKOVIć, MLADEN TOMIć

ANALYSIS OF DYNAMICAL SIMULATION OF ENERGY CONSUMPTION OF ZERO ENERGY EFFICIENT HOME DESIGNED FOR THE AREA OF NIS
MARKO MANIć, DRAGOLJUB ŽIVKOVIć, VLADANA STANKOVIć, GORAN JOVANOVIć

REVIEW OF SOFTWARE FOR SIMULATION AND OPTIMIZATION OF MIDDLE AND HIGH TEMPERATURE SOLAR COLLECTORS
SASA PAVLOVIć, VELIMIR STEFANOVIć, MILAN BORDEVIć

PERFORMANCE ANALYSES OF A THERMALLY STRATIFIED SENSIBLE HEAT STORAGE IN A SOLAR POWERED ABSORPTION COOLING SYSTEM
MILAN BORDEVIć, SASA PAVLOVIć
CIP - Каталогизација у публикацији
Народна библиотека Србије, Београд

621(082)
621:004(082)
681.5(082)
007.52(082)

#The #INTERNATIONAL Conference Mechanical Engineering in XXI Century (2 ; 2013 ; Niš)

ISBN 978-86-6055-039-4
1. Faculty of Mechanical Engineering (Niš)
a) Masinjstvo - Zbornici b) Masinjstvo - Računalna tehnologija - Zbornici c) Primenjena matematika - Zbornici d) Robotika - Zbornici
COBISS.SR-ID 199124736
Axiszmetrical Ionized Gas Boundary Layer on a Porus Wall of The Body of Revolution

Branko OBROVIĆ, Slobodan SAVIĆ
Department for applied mechanics and automatic control
Faculty of Engineering University of Kragujevac, Sestre Janjić 6, Kragujevac, Serbia
ssavic@kg.ac.rs

Abstract— This paper studies the ionized gas flow in the boundary layer on bodies of revolution with porous contour. The gas electroconductivity is assumed to be a function of a longitudinal coordinate x. Saljnikov's version of the general similarity method is used for solution of the problem. The obtained generalized boundary layer equations are solved in a four-parametric localized approximation. Based on the results, conclusions on behavior of certain physical quantities in the boundary layer have been drawn.

Keywords— Boundary layer, ionized gas, body of revolution, porous contour, generalized similarity method

I. INTRODUCTION

This paper summaries results of our investigations of the ionized gas i.e. air flow in the boundary layer on bodies of revolution. Ionized gas flows in the conditions of equilibrium ionization. The contour of the body within the fluid is porous.

The primary objective of this paper is to apply the general similarity method and to solve the obtained generalized boundary layer equations.

The general similarity method was first used by Loitsianski [1] and it was later improved by Saljnikov [2]. In its original version, it was successfully used for problems of dissociated gas flow in the boundary layer [3, 4], Saljnikov’s version of this method was applied in the temperature and MHD boundary layer theory [5, 6], and for solution of dissociated and ionized gas flow in the boundary layer [7-11]. Both versions of the general similarity method are based on usage of a momentum equation and introduction of sets of similarity parameters. In this paper, Saljnikov’s version of the general similarity method is applied.

II. MATHEMATICAL MODEL

When aircrafts fly at supersonic speeds through the Earth’s atmosphere, the temperature in the viscous boundary layer increases significantly. At high temperatures, gas (air) dissociation and ionization occur and the air becomes a multicomponent mixture of atoms, electrons and positively charged ions of oxygen, nitrogen etc. [12-14]. When the temperature in the air flow is high enough, thermochemical equilibrium is established. One of important properties of the ionized gas is its electroconductivity \(\sigma \), which is a function of the temperature i.e., enthalpy [15]. If the ionized gas flows in the magnetic field of the power \(B_m = B_m(x) \), an electric flow is formed in the gas. The electric flow generates Lorentz force and Joule’s heat [15]. The electroconductivity is also assumed to be a function of the longitudinal coordinate \(x \), i.e. that the electroconductivity variation law can be written as

\[
\sigma = \sigma(x),
\]

Therefore, for the case of the ionized gas flow in the magnetic field, the equations of the steady laminar boundary layer on bodies of revolution with porous wall [7, 15] take the following form:

\[
\frac{\partial}{\partial x} (\rho u v_j) + \frac{\partial}{\partial y} (\rho v v_j v_j) = 0, \quad (j = 1)
\]

\[
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \rho_e \mu_e \frac{du}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) + \sigma B_m^2 (u_e - u),
\]

\[
\frac{\partial h}{\partial x} + \frac{\partial h}{\partial y} = -u \rho_e u_e \frac{du}{dx} + \mu \frac{du}{dy}^2 + \frac{\partial}{\partial y} \left(\mu \frac{\partial h}{\partial y} \right) + \sigma B_m^2 (u^2 - u u_e).
\]

The corresponding boundary conditions are:

\[
u = 0, \quad h = h_w = \text{const. for } y = 0,
\]

\[
u \rightarrow v_w(x), \quad h \rightarrow h_w(x) \quad \text{for } y \rightarrow \infty.
\]

In the governing mathematical model (2) is a continuity equation, (3) is dynamic and (4) is energy equation. For the terms \(- \sigma B_m^2 u\) and \(\sigma B_m^2 u^2\) Lorentz force and Joule’s heat are determined respectively [15].

The subscript “e” stands for physical quantities at the outer edge of the boundary layer (\(y \rightarrow \infty \)) and the subscript “w” denotes the values on the wall of the body of revolution (\(y = 0 \)). The given velocity \(v_w(x) \), at which the gas flows perpendicularly through the porous wall of the body of revolution (Fig. 1) can be positive (at injection) or negative (at ejection).
The continuity equation (2) can be written in a form more suitable for derivation of the momentum equation as

\[\frac{\partial}{\partial x} \left[\rho u \left(\frac{r}{L} \right) \right] + \frac{\partial}{\partial y} \left[\rho v \left(\frac{r}{L} \right) \right] = 0, \]

(6)

\(L = \text{const., } j = 1 \).

Here \(L \) is a constant length whose value can equal unity.

III. TRANSFORMATIONS OF THE EQUATIONS

In order to apply the general similarity method, new variables are introduced:

\[s(x) = \frac{1}{\rho_0 h_0} \int_0^x \rho_\omega u_\omega \left(\frac{r}{L} \right) dx, \]

\[z(x,y) = \left(\frac{r}{L} \right)^j \int_0^y \rho \rho_0 dy, \quad (j = 1). \]

(7)

Here, \(\rho_0, \mu_0 = \rho_0 v_0 \) and \(\rho_\omega(x), \mu_\omega(x) \) denote the known values of the density and dynamic, i.e., kinematic viscosity of the gas at some point of the boundary layer (subscript 0) and on the wall of the body of revolution (subscript w).

The stream function \(\psi(s,z) \) is introduced using the relations:

\[u = \frac{\partial \psi}{\partial z}, \]

\[\bar{v} = \frac{1}{(r/L)^j} \frac{\rho_\omega \mu_\omega}{\rho_\mu \mu_\mu} \frac{\partial \psi}{\partial x} + \rho \rho_0 \left(\frac{r}{L} \right) \frac{\partial \psi}{\partial s} = -\frac{\partial \psi}{\partial s}, \]

(8)

that follow from the continuity equation (6).

Since the boundary condition for the velocity at the inner edge of the boundary layer (5) does not equal zero (\(v = v_0(x) \neq 0 \)), as with incompressible fluid [1], the stream function \(\psi(s,z) \) is divided into two parts:

\[\psi(s,z) = \psi_w(s) + \bar{\psi}(s,z), \quad \bar{\psi}(s,0) = 0. \]

(9)

Here, \(\psi_w(s) = \psi(s,0) \) stands for the stream function of the flow adjacent to the wall if the body of revolution \((z = 0) \).

Another change is introduced:

\[s = \frac{h_1}{b'^2/2} K(s) \Phi(s, \eta) = \frac{B(s)}{b'} \Phi(s, \eta), \]

(10)

\(h(s,z) = h_1 \bar{h}(s, \eta), \quad h_1 = \text{const.}, \)

\[K(s) = \left\{ a v_0 \int_0^{b'^{-1}} ds \right\}^{1/2}, \quad a, b = \text{const}. \]

Applying (7)-(10), the governing equations (3) and (4) are transformed into this equation system with the given boundary conditions:

\[\frac{\partial}{\partial \eta} \left[\frac{\partial^2 \Phi}{\partial \eta^2} \right] + \frac{a^2}{2b'} \left(\frac{\partial^2 \Phi}{\partial \eta^2} \right)^2 + \frac{1}{B} \frac{\partial^2 \Phi}{\partial \eta^2} = \frac{u_\omega}{u_e} f \left(\frac{\partial \Phi}{\partial \eta} \right) \frac{\partial \Phi}{\partial \eta} - \frac{2\kappa_f}{b'} \frac{\partial \Phi}{\partial \eta} + \frac{2\kappa_g}{b'} \frac{\partial \Phi}{\partial \eta} \frac{\partial \Phi}{\partial \eta} = \frac{\partial^2 \Phi}{\partial \eta^2} \]

(11)

where prim (') stands for a derivative per the variable \(s \).

During the transformations of the governing equations into the system (11), the usual quantities in the boundary layer theory [3, 7] are introduced: conditional displacement thickness \(\delta'(s) \), conditional momentum loss thickness \(\delta''(s) \), conditional thickness \(\delta'(s) \), non-dimensional friction function \(\zeta(s) \) and a characteristic boundary layer function \(F_m \). These quantities are defined by the expressions:

\[\delta'(s) = \int_0^s \left\{ \frac{\rho}{\rho_0} - \frac{u}{u_e} \right\} dz, \]

\[\delta''(s) = \int_0^s \frac{u}{u_e} \left(1 - \frac{u}{u_e} \right) dz, \quad H = \frac{\delta'}{\delta'}, \]

(12)

\[\delta'(s) = \int_0^s \frac{\rho \mu}{\rho_0 \mu_0} \left(1 - \frac{u}{u_e} \right) dz, \quad H_1 = \frac{\delta'}{\delta'}, \]

\[\zeta(s) = \left[\frac{\partial(u/u_e)}{\partial(z/\delta'')} \right]_{z=0} = B \left(\frac{\partial^2 \Phi}{\partial \eta^2} \right)_{\eta=0}. \]
In the equations of the system (11), there are four parameters: basic form parameter $f(s)$, magnetic parameter $g(s)$, porosity parameter $A(s)$, and local compressibility parameter $\kappa(s)$. They depend on the conditions at the outer or inner edge of the boundary layer and they are defined as:

$$f(s) = \frac{u'_e \Delta^{**}}{v_0} = u'_e Z^{**} = f_1(s);$$

$$g(s) = S Z^{**} = g_1(s),$$

$$S = \frac{1}{(r/L)^{1/2}} \frac{\rho_0 \mu_0 \sigma B^2 m}{\rho_w \mu_w \rho_e},$$

$$A(s) = -\frac{1}{(r/L)^{1/2}} \frac{\mu_0}{\mu_w} v_w \Delta^{**} = -\frac{V_w}{v_0} A_k(s),$$

$$V_w = \frac{1}{(r/L)^{1/2}} \frac{\mu_0}{\mu_w} v_w,$$

where $V_w(s)$ denotes conditional transversal velocity at the inner edge of the boundary layer. The local compressibility parameter is determined as:

$$\kappa = f_0(s) = \frac{u'_e}{2h_1}.$$

In order to bring the governing equation system into a generalized form, a new stream function Φ and nondimensional enthalpy \tilde{h} should be introduced through general similarity transformations as:

$$\tilde{\varphi}(s, \eta) = \frac{u'_e(s) A^{**}(s)}{B(s)} \cdot \Phi(\eta, \kappa, (f_k), (g_k), (A_k)), \quad (15)$$

$$h(s, \eta) = h_1 \cdot \tilde{h}(\eta, \kappa, (f_k), (g_k), (A_k)).$$

In (15), f_k denotes a set of form parameters of Loitsianski's type [1], (g_k) stands for a set of magnetic parameters and (A_k) denotes a set of porosity parameters of the porous wall. The introduced sets of parameters are new independent variables (instead of the variable s) and they are defined as:

$$f_k(s) = u'_e^{-1} u'_e Z^{**k}, \quad g_k(s) = u'_e^{-1} S^{(k-1)} Z^{**k},$$

$$A_k(s) = -u'_e^{-1} \left[\frac{V_w}{\sqrt{v_0}} \right]^{(k-1)} Z^{**k-2},$$

(k = 1, 2, 3,...).

Each set of parameters (16) satisfies a corresponding recurrent simple differential equation:

$$\frac{u_e}{u'_e} \int_0^s \frac{d\Phi}{d\eta} \left(1 - \frac{\partial \Phi}{\partial \eta} \right) d\eta,$$

$$Z^{**} = A^{**}, \quad \frac{dZ^{**}}{ds} = \frac{F_m}{u_e},$$

$$F_m = 2 \left[\zeta - (2 + H_f) f \right] - 2 g H_f - 2 A.$$

Applying similarity transformations (15) a generalized boundary layer equation system is obtained, which in four parameter

$$(k = f_0 \neq 0, f_1 = f \neq 0, g_1 = g \neq 0, A_1 = A \neq 0, f_k = g_k = A_k = 0 \text{ for } k \geq 3)$$

times localized approximation ($\partial / \partial \kappa = 0, \partial / \partial g_1 = 0, \partial / \partial A_1 = 0$) has the following form:

$$\frac{\partial}{\partial \eta} \left(\frac{Q}{\eta^2} \Phi \frac{e^2 \Phi}{\eta^2} \right) + \left(\frac{a b^2}{2 b^2} \right) \Phi \frac{e^2 \Phi}{\eta^2} +$$

$$+ \frac{\partial}{\partial \eta} \left[\frac{\rho_a \beta}{\rho} \left(\frac{\partial \Phi}{\partial \eta} \right) \right] + \frac{g \rho_a}{\rho} \left(\frac{\partial \Phi}{\partial \eta} \right) = \frac{F_m}{\rho_e} \left(\frac{\partial \Phi}{\partial \eta} \right) \frac{e^2 \Phi}{\eta^2} +$$

$$- \frac{2 \kappa f \rho_e}{B^2} \frac{\partial \Phi}{\partial \eta} + 2 \kappa Q \left(\frac{e^2 \Phi}{\eta^2} \right) -$$

$$- \frac{2 \kappa g \rho_e}{B^2} \left(1 - \frac{\partial \Phi}{\partial \eta} \right) +$$

$$(18)$$

$$\frac{\partial}{\partial \eta} \left(\frac{Q}{\rho_e} \frac{e^2 \Phi}{\eta^2} \right) + \frac{a b^2}{2 b^2} \Phi \frac{e^2 \Phi}{\eta^2} -$$

$$- \frac{2 \kappa f \rho_e}{B^2} \frac{\partial \Phi}{\partial \eta} + 2 \kappa Q \left(\frac{e^2 \Phi}{\eta^2} \right) -$$

$$- \frac{2 \kappa g \rho_e}{B^2} \left(1 - \frac{\partial \Phi}{\partial \eta} \right) +$$

$$+ \frac{A \tilde{h}}{B} \frac{\partial \Phi}{\partial \eta} = F_m \frac{\partial \Phi}{\partial \eta} \frac{e^2 \Phi}{\eta^2}.$$
\[Q = Q(x) \approx \left(\frac{\rho u}{\bar{h}} \right)^{1/3}, \quad \rho_e / \rho \approx \bar{h} / (1 - \kappa). \]

(19)

Since Prandtl number slightly depends on temperature \[3\), the equations of the system (18) are solved for a constant value of this number \(Pr = 0.712 \). For constants \(a \) and \(b \), the usual values are adopted \[2\]: \(a = 0.4408 \) and \(b = 5.7140 \).

The system is solved by finite differences method using passage method. A concrete numerical solution of the system (18) is performed using a programme written in FORTRAN.

Finally, in order to obtain more accurate results, the system (18) should be solved in a four-parametric approximation but without localization per the compressibility parameter. However, this kind of solution is fraught with difficulties, mainly of numerical nature.

REFERENCES

