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This paper studies the ionized gas i. e. air flow in an axisymmetrical boundary layer
adjacent to the bodies of revolution. The contour of the body within the fluid is
non-porous. The ionized gas flows under the conditions of equilibrium ionization. A
concrete form of the electro-conductivity variation law has been assumed and stud-
ied here. Through transformation of variables and introduction of sets of parame-
ters, V. N. Saljnikov’s version of the general similarity method has been success-
fully applied. Generalized equations of axisymmetrical ionized gas boundary layer
have been obtained and then numerically solved in a three-parametric localized ap-
proximation.
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Introduction

This paper presents results of our investigations of the ionized gas flow in the bound-

ary layer adjacent to the bodies of revolution. The ionized gas flows under the conditions of the

so-called equilibrium ionization. The contour of the body within the fluid is non-porous.

The primary objective of this paper is to apply the general similarity method for a con-

crete form of the electroconductivity variation law.

The general similarity method was first used by Loitsianskii [1] and it was later im-

proved by Saljnikov and Dallmann [2] – Saljnikov’s version. Investigators of St. Petersburg

School of Boundary Layer used this method to solve numerous problems of dissociated gas flow

in the boundary layer. This method was also successfully applied to problems of planar dissoci-

ated gas boundary layer [3, 4]. Later, investigators of Belgrade School of Boundary Layer used

Saljnikov’s version of the boundary layer theory to solve practical problems of flow in the tem-

perature and magnetohydrodynamics (MHD) boundary layers [5, 6]. This version was also used

for solution of planar dissociated and ionized gas flow [7-11]. In this paper, Saljnikov’s version

of the general similarity method is applied.

Both versions of the general similarity method are based on usage of a momentum

equation and introduction of corresponding sets of parameters [1]. The introduced form, mag-

netic and porosity parameters are called similarity parameters.

Mathematical model

It is well known that the ionized gas i. e. air flow is a multicomponental mixture of at-

oms, electrons, and positively charged oxygen and nitrogen ions [7, 12-14]. When the tempera-
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ture in the airflow is high enough, thermochemical equilibrium is established (equilibrium ion-

ization).

One of the important properties of the ionized gas is its electroconductivity s, which

generally depends on the gas temperature i. e. enthalpy [15]. Analogous to MHD boundary layer

[16], it is here assumed that the electroconductivity variation law can be written as:
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Due to small thickness of the boundary layer, variation of the magnetic power at the

cross-section of the boundary layer (in the direction of y-axis) can be ignored with this flow

problem. Therefore, the component of the magnetic field power Bmy is considered a function

only of the longitudinal co-ordinate x [15]. In our investigations there was no need to define the

function Bm (x), since the so-called parametric solutions of the boundary layer equations are ob-

tained here. Note that the expression Bm(x) = const./x1/2, given in the literature [15], has been

used for this case of the ionized gas flow in the boundary layer. However, this expression is used

exclusively to obtain auto-model solution of the boundary layer equations.

In the case when the ionized gas flow is under the effect of the outer magnetic field of

the power Bm = Bm(x), an electric flow is formed in the gas. The electric flow generates Lorentz

force and Joule’s heat. Due to these two effects, new terms appear in the ionized gas boundary

layer equations. These terms cannot be found in the equations for homogenous unionized gas

[15].

Therefore, the equation system of the steady laminar boundary layer adjacent to the

bodies of revolution when the ionized gas flows in the magnetic field under the conditions of

equilibrium ionization [7, 15, 17], can be written as:
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Based on the boundary conditions on the outer edge of the boundary layer (5) and on

the electroconductivity variation law (1), we get –dp/dx = reue/dx. Hence, the pressure p(x) is

eliminated from the eqs. (3) and (4). Then the governing equation system is brought to:
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Equation (2) is a continuity equation of the

axisymmetrical flow (j = 1) of the compressible

fluid adjacent to the bodies of revolution. This

equation is written in a form (2’) more suitable

for derivation of the momentum equation,

where L is a characteristic length which can

equal unity [4]. The eqs. (3’) and (4’) are dy-

namic and energy equation, respectively.

For the physical quantities in the governing

equation system, notation usual in the boundary

layer theory is used [13-15]. The radius r(x) of

the body of revolution is normal to the axis of

revolution (fig. 1).

The contour of the body is practically defined by the function r(x). The boundary layer

thickness d(x) is assumed to be significantly smaller than the radius of the body of revolution

(d(x) � r(x)). Therefore, it can be neglected, compared to r(x) [14]. This assumption does not

apply to long thin bodies.

Analogous to incompressible fluid flow [1], from the eqs. (2’) and (3’) by integration

transversally to the boundary layer from y = 0 to y � �, we come to the equation:
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In order to solve the integrals, new variables are introduced in the form of the follow-

ing transformations:
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The transformations (7) for j = 0 were used in numerous scientific papers [3, 18].

Here, r0 and m0 = r0n0 denote known values of the density and dynamic (kinematic) viscosity at

a certain point of the boundary layer, while rw and mw stand for their known values on the wall

of the body of revolution.

Changing the variables, i. e. solving the integrals in eq. (6) using the variables (7), the

momentum equation is relatively easily obtained. This equation can be written in its three forms:
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where (') stands for a derivative per a longitudinal variable s.

Equation (8) are formally the same as the momentum equations for the planar [3] and

axisymmetrical boundary layer [19].

In order to obtain the momentum equation the following quantities need to be defined:

the form parameter f (s), magnetic parameter g (s), characteristic function of the boundary layer
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Figure 1. Gas flow adjacent to the body of
revolution



Fm, conditional displacement thickness D*(s), conditional momentum loss thickness D** ( )s , con-

ditional thickness D1
** ( )s , and non-dimensional friction function z(s)� They are defined by the ex-

pressions:
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Note that all the expressions for (9)-(14) for j = 0 are identical with the corresponding

expressions for the planar boundary layer [20].

Transformation of the equations

Analogous to the already solved problems of the fluid flow in the boundary layer, a

stream function y(s, z) is introduced by the relations:
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which follow from the continuity equation.

Using the new variables (7) and introducing the stream function y(s, z) by the relations

(15), the governing equation system (2’)-(5’) is brought to this form:
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In eqs. (16) and (17), the non-dimensional function Q is determined as:
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For j = 0, eqs. (16) and (17) are also identical to the corresponding equations for the

planar ionized gas flow.

A new change of variables.

Introduction of functions F(s, h) and B(s)

In accordance with Saljnikov’s version of the general similarity method, a new change

of variables is introduced using the expressions:
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Here the following notation is used, h(s, z) – a newly introduced transversal variable, F(s, h) –

non-dimensional stream function, h(s, h) – non-dimensional enthalpy, h1 – total enthalpy in the

outer flow, and a, b – arbitrary constants.

Therefore, based on expressions (20) and (21), certain quantities and characteristics of

the boundary layer (9)-(14) can be written as:
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where the quantities A, A1, and B are considered to be continuous functions of the variable s.

Based on expressions (22)-(26), both the newly introduced variable h and the stream function

y(s, z) can be written in more suitable forms as:
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The newly introduced variables (20), i. e. (27), enable transformation of the governing

equation system (16)-(18) into a form more suitable for further analysis. The transformed equa-

tion system, written using the new variables, takes the following form:
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Note that eqs. (28) and (29) contain the factor ue/ �ue. The solution of the system will de-

pend on each concrete form of the law on variation of the velocity ue(s) on the outer edge of the

boundary layer. Consequently, the obtained system (28)-(30) is not generalized in terms of

Loitsianskii [1]. Therefore, the analysis has shown that the so-called generalized boundary layer

equations cannot be obtained using the functions F(s, h) and h s( , )h .

The density re/r ratio and the quantity k are found in the energy equation and in the

boundary conditions. As with the dissociated gas [3], the quantity k stands for the local com-

pressibility parameter which is defined as:
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It represents an in advance given function of the variable s.

Generalized boundary layer equations

In order to bring the system (16)-(18) to a generalized form, the function F and the

non-dimensional enthalpy h are introduced using the so-called general similarity transforma-

tions. In other words, in order to apply the general similarity method, the functions Fand h are

introduced using the expressions:
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where (fk) denotes a set of form parameters of Loitsianskii’s type and (gk) denotes a set of mag-

netic parameters [1, 7]. The introduced sets of similarity parameters are new independent vari-

ables (instead of the variable s) and, as with incompressible fluid, they are defined by the expres-

sions:
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The first parameters (k = 1) of the sets (33) and (34) represent the earlier defined form

parameter f u Z f1 � � �e
** and the magnetic parameter g1 = SZ** = g.
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Each set of parameters satisfies a corresponding recurrent simple differential equation

of the form [1, 7]:
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Having applied the similarity transformations (32) and taking the expressions (27),

(31), and (33)-(36) into consideration, the governing equation system (16)-(18) is finally trans-

formed into the system:
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In the system (37)-(39), distribution of the velocity ue(s) at the outer edge of the bound-

ary layer does not figure explicitly. In that sense, the system is generalized. Therefore, the sys-

tem (37)-(39) is a general mathematical model of the ionized gas flow in the boundary layer ad-

jacent to the bodies of revolution in the case when the variable electroconductivity is defined by

the law (1). For j = 0, the system (37)-(39) is identical to the corresponding system for the planar

ionized gas flow [20].

Since a numerical solution of the obtained equation system is practically impossible,

the system is solved in the so-called n-parametric localized approximation. Here, it is solved in a

three-parametric (k = f0 � �� f1 = f � 0, g1 = g � 0, fk = gk = 0 for k � 2) twice localized (���k � ��
���g1= �) approximation. Thus, the system (37)-(39) is significantly simplified and it comes

down to:
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(40)
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[ ( , , , ), ( , , , )]( )F = F (1) h k h kf h h f1 1
1

1 1g g�

In the system (40)-(42), based on (9)-(14):

F H f Hm � � 
 
2 2 21 1 1[ ( ) ]z g (43)

The system of generalized eqs. (37)-(39) is an approximate mathematical model of the

ionized gas flow in the boundary layer adjacent to the bodies of revolution. Due to the performed lo-

calization, the system is solved for in advance given values of the parameters k = f0 and g1.

Again, note that the equations of the system (40)-(42) are formally the same as the cor-

responding equations for the planar ionized gas flow. For j = 0 these equations are identical [20].

Numerical solution

The system of differential partial equations of the third order (40)-(42) is numerically

solved after the order of the dynamic equation has been reduced by the change:
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Based on (44), the equation system for numerical iteration is finally brought to:
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For the function Q and the density ratio re�r which figure in the system (45)-(47), the

following approximate dependences have been adopted [3]:
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(48)

It is obvious that the accurate laws on distribution of these quantities can be found only

by detailed analysis (using thermodynamic tables for air) but this is not a primary objective of

our investigation. Since Pr for air “depends negligibly on the temperature” [3, 7], the eqs.

(45)-(47) are solved for a constant value of Pr = 0.712. For the constants a and b, the usual values

are adopted [2]: a = 0.4408 and b = 5.7140.

The system of the conjugated partial differential equations (45)-(47) is numerically

solved by the finite differences method – using the passage method. The boundary layer area is

replaced by a planar integration grid, so the values of the functions j, F, and h are calculated at

discrete points of each calculating layer of this grid. A concrete numerical solution is performed

using a programme written in FORTRAN, based on the one used in the paper [2]. Since the equa-

tion system is non-linear, it is solved by an iterative procedure. For the characteristic functions

B, Q, and Fm at zero iteration, the usual values have been adopted [2].

Results

The system (45)-(47) is solved for each cross-section of the boundary layer using the

computer programme. Solutions are obtained in tabular form. Only some of the obtained results

are given here in the form of diagrams.

Figure 2 shows the diagram of the non-dimensional velocity u/ue = ¶F/¶h at three

cross-sections of the boundary layer. The diagram in fig. 3 presents the distribution of the non-

-dimensional enthalpy h for three cross-sections of the boundary layer.

The influence of the compressibility parameter on the distribution of the non-dimen-

sional enthalpy h is illustrated in fig. 4 which shows a diagram of the enthalpy h at one

cross-section of the boundary layer (f1 = 0.10) for three values of this parameter (k = f0 = 0.10;

0.15; 0.20). Figure 5 shows the distribution of the non-dimensional friction function z(f1) in the

boundary layer for three different values of the magnetic parameter. Figure 6 shows the distribu-

tion of the boundary layer characteristic function B(f1) for three values of the magnetic parame-

ter g1. Finally, fig. 7 shows the distribution of the boundary layer characteristic function Fm(f1).
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Figure 2. Diagram of the non-dimensional
velocity u/ue

Figure 3. Diagram of the non-dimensional
enthalpy h



Conclusions

The results of our investigations yield two important general conclusions:

(1) Saljnikov’s version of the general similarity method can be successfully applied to the

studied problem of the axisymmetrical ionized gas flow in the boundary layer.

(2) Distributions of the physical (u/ue, h , , ... )z , and characteristic boundary layer quantities (B,

Fm, ...) have the same behaviour as with other problems of dissociated and ionized gas flow

in the boundary layer [3, 20].

Based on the results and the shown diagrams the following concrete conclusions can be

drawn:

� The non-dimensional flow velocity u/ue (fig. 2) converges very fast towards unity at certain

cross-sections (conffuser and diffuser region) of the boundary layer. It is obvious that the

variation of the form parameter has a small influence on convergence of the non-dimensional

velocity at the outer edge of the boundary layer.
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Figure 6. Distribution of the boundary layer
characteristics B(f1)

Figure 7. Distribution of the characteristic
function Fm (f1)

Figure 5. Distribution of the non-dimensional
friction function z (f 1)

Figure 4. Diagram of the non-dimensional enthalpy
h for different values of the parameter k = f0



� The non-dimensional enthalpy h h h� / 1 also converges very fast towards the value h � �1 k
at the outer edge of the boundary layer (fig. 3).

� According to the diagram in the fig. 4, it can be concluded that the compressibility parameter

has a great influence on the distribution of the non-dimensional enthalpy h in the boundary

layer, which complies with the results for the dissociated gas [3] and ionized gas flow [20].

� The magnetic parameter g1 has an influence on the non-dimensional friction function z (fig.

5) and has even a greater influence on the function B (fig. 6) and the characteristic function

Fm (fig. 7). The increase in the value of the magnetic parameter brings about the increase in

the value of the non-dimensional friction function z, which means that the separation of the

boundary layer is postponed. These findings make a significant contribution to knowledge

and understanding the ionized gas flow in the boundary layer.

Since the compressibility parameter has a great influence on the non-dimensional

enthalpy [3, 21] (changing even the general behaviour of the distribution of the enthalpy h), the

boundary layer equations have to be solved in a three-parametric approximation without local-

ization per the compressibility parameter. This would yield results that are more accurate. How-

ever, this kind of solution is fraught with considerable difficulties, mainly of mathematical and

programming nature. This could be the subject of our further investigations.
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Nomenclature

A, A1, B – boundary layer characteristic, [–]
Bm – induction of outer magnetic field, [= Bm(x)],

[Vsm–2]
a, b – constants, [–]
cp – specific heat of ionized gas at constant

pressure, [Jkg–1K–1]
Fm – characteristic boundary layer function, [–]
f1 – first form parameter, (= f), [–]
fk – set of form parameters, [–]
g1 – first magnetic parameter (= g), [–]
gk – set of magnetic parameters, [–]
H1, H – boundary layer characteristic, [–]
h – enthalpy, [Jkg–1]

h – non-dimensional enthalpy, [–]
he – enthalpy at the outer edge of the boundary

layer, [Jkg–1]
hw – enthalpy at the wall of the body within the

fluid, [Jkg–1]
h1 – total enthalpy in the outer flow, [Jkg–1]
j, k – number, [–]
Pr – Prandtl number (= mcp/l), [–]
p – pressure, [Pa]
Q – non-dimensional function, [–]
r – radius of the body of revolution in the

meridian plane, [m]
s – new longitudinal variable, [m]
u – longitudinal projection of velocity in the

boundary layer, [ms–1]
ue – velocity at the boundary layer outer edge, [ms–1]

n – transversal projection of velocity in the
boundary layer, [ms–1]

x, y – longitudinal and transversal co-ordinate, [m]

Z** – function, [s]
z – new transversal variable, [m]

Greek symbols

D* – conditional displacement thickness, [m]

D** – conditional momentum loss thickness, [m]
D1

**
– conditional thickness, [m]

d – boundary layer thickness, [m]

z – non-dimensional friction function, [–]

h – non-dimensional transversal co-ordinate, [–]

k – local compressibility parameter (= f0), [–]

l – thermal conductivity coefficient, [Wm–1K–1]

m – dynamic viscosity, [Pa�s]

m0 – known values of dynamic viscosity of the
ionized gas, [Pa�s]

mw – given distributions of dynamic viscosity at
the wall of the body within the fluid, [Pa�s]

n0 – kinematic viscosity at a concrete point of the
boundary layer, [m2s–1]

r – density of ionized gas, [kgm–3]

re – ionized gas density at the outer edge of the
boundary layer, [kgm–3]

r0 – known values of density of the ionized gas,
[kgm–3]

rw – given distributions of density at the wall of the
body within the fluid, [kgm–3]

s – electro-conductivity, [Nm3V–2s–1]

F – non-dimensional stream function, [–]

y – steam function, [m2s–1]
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